GdAl3(BO3)4:Cr3+ is used to fabricate a NIR-pc-LED that shows promise for plant lighting and applications in the nondestructive analysis of agricultural products.
K2TiF6:Mn4+ is a highly efficient narrow‐band emission red phosphor with promising applications in white light‐emitting diodes (LEDs) and wide‐gamut displays. Nevertheless, the poor moisture‐resistant properties of this material hinder commercialization. A convenient reverse cation‐exchange strategy is introduced for constructing a core–shell‐structured K2TiF6:Mn4+@K2TiF6 phosphor. The outer K2TiF6 shell acts as a shield for preventing moisture in the air from hydrolyzing the internal MnF62− group, while effectively cutting off the path of energy migration to surface defects, thereby increasing the emission efficiency (especially for the phosphors doped with high concentrations of Mn4+). Employed as a red phosphor, the packaged white LED exhibits an extraordinarily high luminous efficacy of 162 lm W−1, a correlated color temperature (CCT) of 3510 K, and a color rendering index of 93 (Ra). Aging tests performed on this device at 85 °C and 85 % humidity for 480 h retain up to 89 % luminous efficacy. The findings could facilitate commercial application of K2TiF6:Mn4+@K2TiF6 phosphor.
Large-scale pure titanate nanotubes were synthesized through the hydrothermal reaction between TiO 2 powders and concentrated NaOH under an unexpected high temperature of 240 °C, while it was generally claimed that it is impossible to form nanotubes at temperatures higher than 180 °C. The titanate nanotube was found to be an inevitable intermediate product, which finally transformed into a nanowire upon increasing the hydrothermal treatment duration. It was proven that the successive appearance of nanosheets, nanotubes, and nanowires are three unavoidable kinetic products of the reaction. Increasing the temperature could only accelerate the nanotube-nanowire transformation process but could not affect the sequence of the reaction events. The transformation kinetics from nanotubes to nanowires under different reaction temperatures was studied. Detailed studies indicate that this transformation process was accompanied by a coarsening process induced by both oriented attachment (OA) and Ostwald ripening (OR) mechanisms simultaneously; thereafter, the OA-OR cooperative mechanism was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.