The recruitment of neural stem/progenitor cells (NSPCs) for brain restoration after injury is a promising regenerative therapeutic strategy. This strategy involves enhancing proliferation, migration and neuronal differentation of NSPCs. To date, the lack of biomaterials, which facilitate these processes to enhance neural regeneration, is an obstacle for the cell replacement therapies. Our previous study has shown that NSPCs grown on poly-L-ornithine (PO) could proliferate more vigorously and differentiate into more neurons than that on Poly-L-Lysine (PLL) and Fibronectin (FN). Here, we demonstrate that PO could promote migration of NSPCs in vitro, and the underlying mechanism is PO activates α-Actinins 4 (ACTN4), which is firstly certified to be expessed in NSPCs, to promote filopodia formation and therefore enhances NSPCs migration. Taken together, PO might serve as a better candidate for transplanted biomaterials in the regenerative therapeutic strategy, compared with PLL and FN.
The blood-brain barrier (BBB) protects the central nervous system from external insults by limiting substance diffusion through the endothelial interface. The presence of the BBB makes drug delivery in neurological disorders very challenging. Cisplatin has been shown to be cytotoxic to glioma cells, but substantial limitations exist in its clinical applications due to difficulties in penetration across the BBB. Here, we show that L-borneol, a messenger drug widely used in traditional Chinese medicine, can induce transient disruption of the BBB after 20 min of oral administration. The permeability of the BBB began to recover within 1 h of the administration of L-borneol. Different dosages of L-borneol (100, 150, 300, 600, and 900 mg/kg) could induce significant Evans blue leakage (P<0.05). Oral administration of L-borneol elevated cisplatin concentrations in peritumoral tissue (1.24±0.12 μg/g) and tumor loci (1.41±0.13 μg/g), compared with those in the paraffin control (0.88±0.10 and 0.92±0.15 μg/g, respectively) (P<0.05). Furthermore, we found that the median survival period of tumor-bearing mice was significantly higher in the cisplatin plus L-borneol group (24.0±4.9 days) than in the cisplatin plus vehicle group (19.3±3.9 days) (P<0.05). The neurological deficits were more severe in the vehicle and cisplatin plus vehicle groups at 14 and 21 days after implantation of intracranial glioma cells than in the cisplatin plus L-borneol group. In conclusion, our results indicate that the transient opening of the BBB induced by L-borneol could enhance cisplatin accumulation within the glioma tissue and improve the survival of tumor-bearing mice.
Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those involved in the estrogen-related antiapoptotic effects mediated by GPR30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.