A novel air-stable sodium iron hexacyanoferrate (R-Na1.92Fe[Fe(CN)6]) with rhombohedral structure is demonstrated to be a scalable, low-cost cathode material for sodium-ion batteries exhibiting high capacity, long cycle life, and good rate capability. The cycling mechanism of the iron redox is clarified and understood through synchrotron-based soft X-ray absorption spectroscopy, which also reveals the correlation between the physical properties and the cell performance of this novel material. More importantly, successful preparation of a dehydrated iron hexacyanoferrate with high sodium-ion concentration enables the fabrication of a discharged sodium-ion battery with a non-sodium metal anode, and the manufacturing feasibility of low cost sodium-ion batteries with existing lithium-ion battery infrastructures has been tested.
Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.