Black gram (Vigna mungo) is an important short duration grain legume crop. Black gram seeds provide an inexpensive source of dietary protein. Here, we applied the 10X Genomics linked‐read technology to obtain a de novo whole genome assembly of V. mungo cultivated variety Chai Nat 80 (CN80). The preliminary assembly contained 12,228 contigs and had an N50 length of 5.2 Mb. Subsequent scaffolding using the long‐range Chicago and HiC techniques yielded the first high‐quality, chromosome‐level assembly of 499 Mb comprising 11 pseudomolecules. Comparative genomics analyses based on sequence information from single‐copy orthologous genes revealed that black gram and mungbean (Vigna radiata) diverged about 2.7 million years ago . The transversion rate (4DTv) analysis in V. mungo revealed no evidence supporting a recent genome‐wide duplication event observed in the tetraploid créole bean (Vigna reflexo‐pilosa). The proportion of repetitive elements in the black gram genome is slightly lower than the numbers reported for related Vigna species. The majority of long terminal repeat retrotransposons appeared to integrate into the genome within the last five million years. We also examined alternative splicing events in V. mungo using full‐length transcript sequences. While intron retention was the most prevalent mode of alternative splicing in several plant species, alternative 3' acceptor site selection represented the majority of events in black gram. Our high‐quality genome assembly along with the genomic variation information from the germplasm provides valuable resources for accelerating the development of elite varieties through marker‐assisted breeding and for future comparative genomics and phylogenetic studies in legume species.
The coral holobiont is a complex ecosystem consisting of coral animals and a highly diverse consortium of associated microorganisms including algae, fungi, and bacteria. Several studies have highlighted the importance of coral‐associated bacteria and their potential roles in promoting the host fitness and survival. Recently, dynamics of coral‐associated microbiomes have been demonstrated to be linked to patterns of coral heat tolerance. Here, we examined the effect of elevated seawater temperature on the structure and diversity of bacterial populations associated with Porites lutea, using full‐length 16S rRNA sequences obtained from Pacific Biosciences circular consensus sequencing. We observed a significant increase in alpha diversity indices and a distinct shift in microbiome composition during thermal stress. There was a marked decline in the apparent relative abundance of Gammaproteobacteria family Endozoicomonadaceae after P. lutea had been exposed to elevated seawater temperature. Concomitantly, the bacterial community structure shifted toward the predominance of Alphaproteobacteria family Rhodobacteraceae. Interestingly, we did not observe an increase in relative abundance of Vibrio‐related sequences in our heat‐stressed samples even though the appearance of Vibrio spp. has often been detected in parallel with the increase in the relative abundance of Rhodobacteraceae during thermal bleaching in other coral species. The ability of full‐length 16S rRNA sequences in resolving taxonomic uncertainty of associated bacteria at a species level enabled us to identify 24 robust indicator bacterial species for thermally stressed corals. It is worth noting that the majority of those indicator species were members of the family Rhodobacteraceae. The comparison of bacterial community structure and diversity between corals in ambient water temperature and thermally stressed corals may provide a better understanding on how bacteria symbionts contribute to the resilience of their coral hosts to ocean warming.
Coral‐associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral‐associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea‐associated bacterial and algal communities throughout a natural bleaching event, using full‐length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral‐associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.