Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.
Erythromycin (EM) is a macrolide antibiotic that is frequently used to treat skin bacterial infections. It has a short half-life (1–1.5 h), instability in stomach pH, and a low oral bioavailability. These foregoing factors limit its oral application; therefore, the development of topical formulations loaded with erythromycin is an essential point to maximize the drug’s concentration at the skin. Accordingly, the current study’s goal was to boost the antimicrobial activity of EM by utilizing the advantages of natural oils such as cinnamon oil. Erythromycin-loaded transethosomes (EM-TE) were generated and optimized using a Box–Behnken design employing, phospholipid concentration (A), surfactant concentration (B), and ethanol content (C) as independent variables. Their effects on entrapment efficiency, EE, (Y1) and the total amount of erythromycin that penetrated the skin after 6 h, Q6h (Y2), were assessed. The optimized transethosome showed a particle size of 256.2 nm, EE of 67.96 ± 0.59%, and Q6h of 665.96 ± 5.87 (µg/cm2) after 6 h. The TEM analysis revealed that, the vesicles are well-known packed structures with a spherical shape. The optimized transethosomes formulation was further transformed into a cinnamon oil-based emulgel system using HPMC as a gelling agent. The generated EM-TE-emulgel was characterized by its physical features, in vitro, ex vivo studies, and antimicrobial activities. The formulation showed sufficient characteristics for effective topical application, and demonstrated a great stability. Additionally, EM-TE-Emulgel had the highest transdermal flux (120.19 μg/cm2·h), and showed considerably (p < 0.05) greater antimicrobial activity, than EM-TE-gel and placebo TE-Emulgel. The action of EM was subsequently augmented with cinnamon oil, which eventually showed a notable effect against bacterial growth. Finally, these results demonstrate that the transethosomes-loaded cinnamon oil-based emulgel is an alternative way to deliver erythromycin for the treatment of topical bacterial infections.
Ginger, a natural plant belonging to the Zingeberaceae family, has been reported to have reasonable anti-inflammatory effects. The current study aimed to examine ginger extract transdermal delivery by generating niosomal vesicles as a promising nano-carrier incorporated into emulgel prepared with sesame oil. Particle size, viscosity, in vitro release, and ex vivo drug penetration experiments were performed on the produced formulations (ginger extract loaded gel, ginger extract loaded emulgel, ginger extract niosomal gel, and ginger extract niosomal emulgel). Carrageenan-induced edema in rat hind paw was employed to estimate the in vivo anti-inflammatory activity. The generated ginger extract formulations showed good viscosity and particle size. The in vitro release of ginger extract from niosomal formulation surpassed other formulations. In addition, the niosomal emulgel formulation showed improved transdermal flux and increased drug permeability through rabbit skin compared to other preparations. Most importantly, carrageenan-induced rat hind paw edema test confirmed the potential anti-inflammatory efficacy of ginger extract niosomal emulgel, compared to other formulations, as manifested by a significant decrease in paw edema with a superior edema inhibition potency. Overall, our findings suggest that incorporating a niosomal formulation within sesame oil-based emulgel might represent a plausible strategy for effective transdermal delivery of anti-inflammatory drugs like ginger extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.