a b s t r a c tIn HCT116 colorectal cancer cells, HeLa cervical cancer cells and HuH-7 hepatoma cells, miR-223 is expressed at a low level. Through infection with lentivirus containing miR-223 precursor, miR-233 was overexpressed in all these cells. Interestingly, the expression levels of FOXO1 mRNA and protein, and phosphorylation levels became significantly lower than those of their control. FOXO1 was down-regulated mainly in the cytoplasm, while the nuclear FOXO1 level became relatively high compared to the cytoplasm. As the unphosphorylated active form of FOXO1 increased in the cells, cyclin D1/p21/p27 were up-regulated at either mRNA or protein level. Proliferation of the cells was also greatly inhibited when miR-223 was over-expressed. Therein, our data suggest that miR-223 regulates FOXO1 expression and cell proliferation.
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Objective
Exosomes derived from cancer-associated fibroblasts (CAFs) are known as important drivers of tumor progression. Previously, microRNA (miR)-148b-3p has been found to be upregulated in bladder cancers as well as in body fluids (blood, urine) of bladder cancer patients. Here, we aimed to explore the role of CAF-derived exosome miR-148b-3p in bladder cancer progression and chemosensitivity.
Methods
Transwell, MTT, flow cytometry and colony formation assays were applied to assess the effects of CAF-derived exosomes on bladder cancer cell metastasis, epithelial-mesenchymal transition (EMT) and chemosensitivity. A dual luciferase reporter assay was employed to evaluate the targeting relationship between miR-148b-3p and PTEN. Gain- and loss- of function assays were conducted to explore the roles of miR-148b-3p and PTEN in the behavior of bladder cancer cells. The role of PTEN in the metastasis, EMT and chemosensitivity of bladder cancer cells was assessed both in vivo and in vitro.
Results
We found that CAF-derived exosomes promoted the metastasis, EMT and drug resistance of bladder cancer cells. We also found that CAF-derived exosomes could directly transport miR-148b-3p into bladder cancer cells. In a xenograft mouse model we found that CAF-derived exosomes increased miR-148b-3p expression levels and promoted tumor proliferation, metastasis and drug resistance. PTEN was validated as a target of miR-148b-3p. Concordantly, we found that PTEN overexpression inhibited EMT, metastasis and chemoresistance in bladder cancer cells, reversing the tumor promoting effects of miR-148b-3p via the Wnt/β-catenin pathway.
Conclusions
Our results suggest that miR-148b-3p downregulation in CAF-derived exosomes, thereby inhibiting the Wnt/β-catenin pathway and promoting PTEN expression, may offer potential opportunities for bladder cancer treatment.
Therapeutic failure in prostate cancer (PC) is believed to result from its unusually invasive and metastatic nature. Cancer-associated fibroblasts (CAFs) are essential in the tumor microenvironment. We intended to study the role of CAF-derived exosomes in the context of PC and the potential regulatory mechanism associated with miR-423-5p and GREM2. CAF-derived exosomes decreased the chemosensitivity of parental PC cells and enhanced the drug resistance of drug-resistant cells. PC-associated fibroblast-derived exosomes carrying miR-423-5p increased the resistance of PC to taxane by inhibiting GREM2 through the TGF-β pathway. Inhibition of the TGF-β pathway partially reversed the increased drug resistance in PC cells induced by CAF-derived exosomes. Inhibition of miR-423-5p enhanced the drug sensitivity of PC cells in vivo. We showed that CAF-secreted exosomal miR-423-5p promoted chemotherapy resistance in PC by targeting GREM2 through the TGF-β pathway. This study may allow the development of novel approaches for PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.