In the last few years, long-pulse H-mode plasma discharges (with small edge-localized modes and normalized beta, β N ~ 1) have been realized at the Experimental Advanced Superconducting Tokamak (EAST). This paper reports on high-β N (>1.5) discharges in the 2015 EAST campaign. The characteristics of these H-mode plasmas have been presented in a database. Analysis of the experimental limit of β N has revealed several main features of typical discharges. Firstly, efficient, stable high heating power is required. Secondly, control of impurity radiation (partly due to interaction between the plasma and the in-vessel components) is also a critical issue for the maintenance of high-β N discharges. In addition an internal transport barrier (ITB) has recently been observed in EAST, introducing further improvement in confinement surpassing H-mode plasmas. ITB dynamics is another key issue for high-β N plasmas in EAST. Each of these features is discussed in this paper. Study and improvement of these issues could be considered as the key to achieving long-pulse high-β N operation with EAST.
Here we report the experimental analysis on the low-n (mostly n = 1, sometimes n = 2) magnetic coherent mode (MCM) at a characteristic frequency 20–, which has been frequently observed in various H-mode discharges on EAST. This mode can be easily identified in the magnetic fluctuations measured by the fast Mirnov coils mounted on the vacuum vessel wall, but is detected by the local measurements of edge electrostatic fluctuations only when the mode is sufficiently strong. The apperance of the MCM is summarized covering broad ranges of discharge parameters, in particular, the different heating schemes including pure neutral beams injected in either co- or counter-current direction as well as pure ratio-frequency waves. This may rule out the possibility of fast particle driven modes. Radial distribution and poloidal propagation of the MCM are investigated using the Doppler backscattering system and Langmuir probes inserted at the outer midplane, respectively. Temporal evolution of MCM amplitude during large ELM crashes is evaluated in detail, may suggesting the mode is closely correlated with pedestal buildup. Dedicated experiments reveal the possible correlations of MCM’s frequencies with edge line-averaged density and edge safety factor q95. We also present the observation of multi MCMs at relatively high q95, which are speculated locating at different rational surfaces in the pedestal via analyzing their mode structures and nonlinear interactions. Finally, effect of the MCM on edge particle transport is explored via surveying the correlation between the intermittent events of the mode and the particle fluxes deposited on the divertor target plates, utilizing the conditional analysis method. Corresponding results suggest that the MCM seems to primarily result in a notable poloidal redistribution of the divertor particle flux, rather than a considerable net increase of the total flux.
To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.