To identify susceptibility variants for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we conducted a genome-wide association study by genotyping 440,794 SNPs in 355 chronic HBV carriers with HCC and 360 chronic HBV carriers without HCC, all of Chinese ancestry. We identified one intronic SNP (rs17401966) in KIF1B on chromosome 1p36.22 that was highly associated with HBV-related HCC and confirmed this association in five additional independent samples, consisting of 1,962 individuals with HCC, 1,430 control subjects and 159 family trios. Across the six studies, the association with rs17401966 was highly statistically significant (joint odds ratio = 0.61, P = 1.7 x 10(-18)). In addition to KIF1B, the association region tagged two other plausible causative genes, UBE4B and PGD. Our findings provide evidence that the 1p36.22 locus confers susceptibility to HBV-related HCC, and suggest that KIF1B-, UBE4B- or PGD-related pathways might be involved in the pathogenesis of this malignancy.
N
6
-methyladenosine (m
6
A) modification is an important mechanism in miRNA processing and maturation, but the role of its aberrant regulation in human diseases remained unclear. Here, we demonstrate that oncogenic primary microRNA-25 (miR-25) in pancreatic duct epithelial cells can be excessively maturated by cigarette smoke condensate (CSC) via enhanced m
6
A modification that is mediated by NF-κB associated protein (NKAP). This modification is catalyzed by overexpressed methyltransferase-like 3 (METTL3) due to hypomethylation of the
METTL3
promoter also caused by CSC. Mature miR-25, miR-25-3p, suppresses PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2), resulting in the activation of oncogenic AKT-p70S6K signaling, which provokes malignant phenotypes of pancreatic cancer cells. High levels of miR-25-3p are detected in smokers and in pancreatic cancers tissues that are correlated with poor prognosis of pancreatic cancer patients. These results collectively indicate that cigarette smoke-induced miR-25-3p excessive maturation via m
6
A modification promotes the development and progression of pancreatic cancer.
Esophageal squamous-cell carcinoma (ESCC) is one of the most prevalent cancers worldwide and occurs at a relatively high frequency in China. To identify genetic susceptibility loci for ESCC, we conducted a genome-wide association study on 2,031 individuals with ESCC (cases) and 2,044 controls of Chinese descent using 666,141 autosomal SNPs. We evaluated promising associations in an additional 6,276 cases and 6,165 controls of Chinese descent from different areas of China. We identified seven susceptibility loci on chromosomes 5q11, 6p21, 10q23, 12q24 and 21q22 (ranging from P = 7.48 × 10(-12) to P = 2.44 × 10(-31)); among these loci, 5q11, 6p21 and 21q22 were newly identified. Three variants in high linkage disequilibrium on 12q24 confer their risks to ESCC in a gene-lifestyle interaction manner, with more pronounced risk enhancement seen in tobacco and alcohol users. Furthermore, the identified variants had a cumulative association with ESCC risk (P(trend) = 7.92 × 10(-56)). These findings highlight the involvement of multiple genetic loci and gene-environment interaction in the development of esophageal cancer.
We conducted a genome-wide association study of gastric cancer (GC) and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 single nucleotide polymorphisms (SNPs). We report a combined analysis of 2,240 GC cases, 2,115 ESCC cases, and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex, and study, multiple variants at 10q23 had genome-wide significance for GC and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for GC (P=8.40×1010Information Management Services Inc.Silver SpringMarylandUNITED STATES; per allele odds ratio (OR) = 1.31) and ESCC (P=3.85×10−9; OR = 1.34). The association with GC differed by anatomic subsite. For tumors located in the cardia the association was stronger (P=4.19 × 10−15; OR= 1.57) and for those located in the noncardia stomach it was absent (P=0.44; OR=1.05). Our findings at 10q23 could provide insight into the high incidence rates of both cancers in China.
The generation of new blood vessels via angiogenesis is critical for meeting tissue oxygen demands. A role for adult stem cells in this process remains unclear. Here, we identified CD157 (bst1, bone marrow stromal antigen 1) as a marker of tissue-resident vascular endothelial stem cells (VESCs) in large arteries and veins of numerous mouse organs. Single CD157 VESCs form colonies in vitro and generate donor-derived portal vein, sinusoids, and central vein endothelial cells upon transplantation in the liver. In response to injury, VESCs expand and regenerate entire vasculature structures, supporting the existence of an endothelial hierarchy within blood vessels. Genetic lineage tracing revealed that VESCs maintain large vessels and sinusoids in the normal liver for more than a year, and transplantation of VESCs rescued bleeding phenotypes in a mouse model of hemophilia. Our findings show that tissue-resident VESCs display self-renewal capacity and that vascular regeneration potential exists in peripheral blood vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.