The correlation between brain atrophy and EDSS score was better in patients with secondary progressive MS than in those with relapsing-remitting MS.
Background: Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Methods: Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell cycle progression. At the same time, exosomes were isolated from the supernatant to analyze the paracrine miR-133. For in-vivo studies, constitutive activation of miR-133 in MSCs was achieved by lentivirus-mediated miR-133 overexpression. A rat myocardial infarction model was created by ligating the left anterior descending coronary artery, while control MSCs (vector-MSCs) or miR-133-overexpressed MSCs (miR-133-MSCs) were injected into the zone around the myocardial infarction. Subsequently, myocardial function was evaluated by echocardiography on days 7 and 28 post infarction. Finally the infarcted hearts were collected on days 7 and 28 for myocardial infarct size measurement and detection of snail 1 expression. Results: Hypoxia-induced apoptosis of MSCs obviously reduced, along with enhanced expression of total poly ADP-ribose polymerase protein, after miR-133 agomir transfection, while the apoptosis rate increased in MSCs transfected with miR-133 antagomir. However, no change in cell viability and cell-cycle distribution was observed in control, miR-133-overexpressed, and miR-133-interfered MSCs. Importantly, rats transplanted with miR-133-MSCs displayed more improved cardiac function after acute myocardial infarction, compared with those that received vector-MSC injection. Further studies indicated that cardiac expression of snail 1 was significantly repressed by adjacent miR-133-overexpressing MSCs, and both the inflammatory level and the infarct size decreased in miR-133-MSC-injected rat hearts.
We examined the relations between quantitative volumetric estimates of cerebral lesion load based on magnetization transfer imaging (MTI), clinical data, and measures of neuropsychological function in 44 patients with clinically diagnosed MS. In this population we assessed the correlation between several volumetric MTI measures, measures of neurologic function (Kurtzke Expanded Disability Status Scale and Ambulation Index), and disease duration using Spearman's correlation coefficient. Patients were classified on the basis of neuropsychological test performance as severely impaired, moderately impaired, and normal. We assessed differences between these groups with respect to MTI results using the Kruskal-Wallis test. MTI measures corrected for brain volume were found to correlate with disease duration (p < 0.01) and showed suggestive correlations with measures of neurologic impairment (p < 0.05). Individual neuropsychological tests correlated with MTI measures corrected and not corrected for brain volume (p < 0.001). An MTI measure not corrected for brain volume differed (p < 0.05) between severely impaired, moderately impaired, and normal patients. These preliminary results suggest that volumetric MTI analysis provides new measures that reflect more accurately the global lesion load in the brain of MS patients, and they may serve as a method to study the natural course of the disease and as an outcome measure to evaluate the effect of drugs.
Adipose-derived stem cells (ADSCs) are easily obtained and expanded, and have emerged as a novel source of adult stem cells for the treatment of cardiovascular diseases. These cells have been shown to have the capability of differentiating into cardiomyocytes, vascular smooth muscle cells, and endothelial cells. Furthermore, ADSCs secrete a series of paracrine factors to promote neovascularization, reduce apoptosis, and inhibit fibrosis, which contributes to cardiac regeneration. As a novel therapy in the regenerative field, ADSCs still face various limitations, such as low survival and engraftment. Thus, engineering and pharmacological studies have been conducted to solve these problems. Investigations have moved into phase I and II clinical trials examining the safety and efficacy of ADSCs in the setting of myocardial infarction. In this review, we discuss the differentiation and paracrine functions of ADSCs, the strategies promoting their therapeutic efficacy, and their clinical usage.
The epithelial-mesenchymal transition (EMT) plays a critical role in tumor progression. To obtain a broad view of the molecules involved in EMT, we carried out a comparative proteomic analysis of transforming growth factor-B1 (TGF-B1)-induced EMT in AML-12 murine hepatocytes. A total of 36 proteins with significant alterations in abundance were identified. Among these proteins, ferritin heavy chain (FHC), a cellular iron storage protein, was characterized as a novel modulator in TGF-B1-induced EMT. In response to TGF-B1, there was a dramatic decrease in the FHC levels, which caused iron release from FHC and, therefore, increased the intracellular labile iron pool (LIP). Abolishing the increase in LIP blocked TGF-B1-induced EMT. In addition, increased LIP levels promoted the production of reactive oxygen species (ROS), which in turn activated p38 mitogen-activated protein kinase. The elimination of ROS inhibited EMT, whereas H 2 O 2 treatment rescued TGF-B1-induced EMT in cells in which the LIP increase was abrogated. Overexpression of exogenous FHC attenuated the increases in LIP and ROS production, leading to a suppression of EMT. We also showed that TGF-B1-mediated down-regulation of FHC occurs via 3 ¶ untranslated regiondependent repression of the translation of FHC mRNA. Moreover, we found that FHC down-regulation is an event that occurs between the early and highly invasive advanced stages in esophageal adenocarcinoma and that depletion of LIP or ROS suppresses the migration of tumor cells. Our data show that cellular iron homeostasis regulated by FHC plays a critical role in TGF-B1-induced EMT. [Cancer Res 2009;69(13):5340-8]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.