Although it had limited activity as a single agent, cetuximab appears to augment the antitumor activity of paclitaxel in previously treated urothelial cancers. The cetuximab and paclitaxel combination merits additional study to establish its role in the treatment of urothelial cancers.
Hepatitis B virus (HBV) is a hepatotropic virus causing hepatitis, cirrhosis and hepatocellular carcinoma (HCC). The methylation status of the HBV DNA in its different forms can potentially provide insight into the pathogenesis of HBV-related liver diseases, including HCC, however this is unclear. The goal of this study is to obtain comprehensive DNA methylation profiles of the three putative CpG islands in the HBV DNA in infected livers, with respect to liver disease progression. The extent of methylation in these CpG islands was first assessed using bisulfite PCR sequencing with a small set of tissue samples, followed by analysis using both quantitative bisulfite-specific PCR and quantitative methylation-specific PCR assays in a larger sample size (n = 116). The level of HBV CpG island 3 methylation significantly correlated with hepatocarcinogenesis. We also obtained, for the first time, evidence of rare, non-CpG methylation in CpG island 2 of the HBV genome in infected liver. Comparing methylation of the HBV genome to three known HCC-associated host genes, APC, GSTP1, and RASSF1A, we did not identify a significant correlation between these two groups.
Hepatocellular carcinoma (HCC) has a 5-year survival rate of <10% because it is difficult to diagnose early. Mutations in the TP53 gene are associated with approximately 50% of human cancers. A hotspot mutation, a G:C to T:A transversion at codon 249 (249T), may be a potential DNA marker for HCC screening because of its exclusive presence in HCC and its detection in the circulation of some patients with HCC. A locked nucleic acid clamp-mediated PCR assay, followed by melting curve analysis (using the SimpleProbe), was developed to detect the TP53 249T mutation. In this assay, the locked nucleic acid clamp suppressed 10(7) copies of wild-type templates and permitted detection of 249T-mutated template, with a sensitivity of 0.1% (1:1000) of the mutant/wild-type ratio, assessed by a reconstituted standard within 2 hours. With an amplicon size of 41 bp, it detects target DNA sequences in short fragmented DNA templates. The detected mutations were validated by DNA sequencing analysis. We then tested DNA isolated from urine samples of patients with HCC for p53 mutations and identified positive TP53 mutations in 9 of 17 samples. The possibility of using this novel TP53 249T assay to develop a urine or blood test for HCC screening is discussed.
The study was aimed at assessing the diagnostic performance of 68 Ga-PSMA-617 PET/CT in the detection of prostate cancer (PCa) in patients with a prostate-specific antigen (PSA) level of 4-20 ng/ ml and to compare its efficacy with that of multiparametric MRI (mpMRI). We analyzed the data of 67 consecutive patients with PSA levels of 4-20 ng/ml who almost simultaneously underwent 68 Ga-PSMA-617 PET/CT and mpMRI. 68 Ga-PSMA-617 PET/CT and mpMRI diagnostic performances were compared via receiver operating characteristic (ROC) curve analysis. Of the 67 suspected PCa cases, 33 had pathologically confirmed PCa. 68 Ga-PSMA-617 PET/CT showed a patient-based sensitivity, specificity, and positive and negative predictive values (PPVs and NPVs) of 87.88%, 88.24%, 87.88%, and 88.24%, respectively. The corresponding values for mpMRI were 84.85%, 52.94%, 63.64%, and 78.26%. The area under the curve values for 68 Ga-PSMA-617 PET/CT and mpMRI were 0.881 and 0.689, respectively. 68 Ga-PSMA-617 PET/CT showed a better diagnostic performance than mpMRI in the detection of PCa in patients with PSA levels of 4-20 ng/ml.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.