Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.
To investigate the cellular role of dual specificity Yak1-related kinase (Dyrk) 1, a nuclear localized dual specificity protein kinase, we examined its effect on transcriptional regulation using reporter gene assays. We found that Dyrk1 can substantially enhance Gli1-dependent, but not LEF-1-, c-Jun-, or Elk-dependent, gene transcription. In part, Dyrk1 does this through retaining Gli1 in the nucleus. However, we also demonstrate that Dyrk1 can enhance the transcriptional activity of Gli1-AHA, a nuclear export mutant, suggesting that
Neuroligins belong to a highly conserved family of cell adhesion molecules that have been implicated in synapse formation and function. However, the precise in vivo roles of Neuroligins remain unclear. In the present study, we have analyzed the function of Drosophila neuroligin 2 (dnl2) in synaptic development and function. We show that dnl2 is strongly expressed in the embryonic and larval CNS and at the larval neuromuscular junction (NMJ). dnl2 null mutants are viable but display numerous structural defects at the NMJ, including reduced axonal branching and fewer synaptic boutons. dnl2 mutants also show an increase in the number of active zones per bouton but a decrease in the thickness of the subsynaptic reticulum and length of postsynaptic densities. dnl2 mutants also exhibit a decrease in the total glutamate receptor density and a shift in the subunit composition of glutamate receptors in favor of GluRIIA complexes. In addition to the observed defects in synaptic morphology, we also find that dnl2 mutants show increased transmitter release and altered kinetics of stimulus-evoked transmitter release. Importantly, the defects in presynaptic structure, receptor density, and synaptic transmission can be rescued by postsynaptic expression of dnl2. Finally, we show that dnl2 colocalizes and binds to Drosophila neurexin (dnrx) in vivo. However, whereas homozygous mutants for either dnl2 or dnrx are viable, double mutants are lethal and display more severe defects in synaptic morphology. Altogether, our data show that, although dnl2 is not absolutely required for synaptogenesis, it is required postsynaptically for synapse maturation and function.
Neurexins are highly polymorphic cell-surface adhesive molecules in neurons. In cultured mammalian cell system, they were found to be involved in synaptogenesis. Here, we report for the first time that Drosophila neurexin is required for synapse formation and associative learning in larvae. Drosophila genome encodes a single functional neurexin (CG7050; Neurexin-1 or Nrx-1), which is a homolog of vertebrate a-neurexin. Neurexin-1 is expressed in central nervous system and highly enriched in synaptic regions of the ventral ganglion and brain. Neurexin-1 null mutants are viable and fertile, but have shortened lifespan. The synapse number is decreased in central nervous system in Neurexin-1 null mutants. In addition, Neurexin-1 null mutants exhibit associative learning defect in larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.