Surface water, suspended particulate matter, pore water, and sediment samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) in Yongding New River, South Drainage Canal and North Drainage Canal, which receive most of wastewater from industrial city of Tianjin. PAH concentrations in effluent samples of wastewater treatment plants (WTP) discharging into the South Drainage Canal and North Drainage Canal were quantified for the first time. The results showed that the discharge of the WTPs recently only contributed to the PAH contamination in the canals near the outlets of the WTPs. PAH levels in sediments of the streams were greatly higher than those in soils by riverbank probably due to receiving large amounts of untreated wastewater. Unusually high benz[a] anthracene concentration strongly influenced the seasonal and spatial variation of total PAH concentrations in South Drainage Canal. Paired samples t test of ∑Nap, Fl, Phe, Fluo and ∑Nap, Phe, Fluo, Chry concentrations, which were dominant components in the air samples from non-heating and heating season, respectively, in the suspended particulate matters from the streams showed that PAH source from air deposition was more important for Yongding New River than that for South Drainage Canal and North Drainage Canal. Source apportionment based on PAH profiles indicated that coal combustion was the major PAH contamination source, and coke oven sources and wood combustion also contributed to the PAH contamination of the streams. This was further indicated by organic petrography analysis.
Helium-3 (3He) is a noble gas that has critical applications in scientific researches and promising application potential as clean fusion energy. It is thought that the lunar regolith contains large amounts of helium. But it is challenging to extract because most helium atoms are reserved in defects of crystals or as solid solutions. Here, we find large amounts of helium bubbles in the glassy surface layer of ilmenite particles that were brought back by Chang’E-5 mission. The special disorder atomic packing structure of glasses should be the critical factor for capturing the noble helium gas. The reserves in bubbles don’t require heating to high temperatures to extract. Mechanical methods at ambient temperatures can easily break the bubbles. Our results provide insights on the mechanism of helium gathering on the moon and offer guidance on future in situ extraction of helium on the Moon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.