Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 μg/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 μg/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.
The Chinese Glioma Cooperative Group (CGCG) Guideline Panel for adult diffuse gliomas provided recommendations for diagnostic and therapeutic procedures. The Panel covered all fields of expertise in neuro-oncology, i.e. neurosurgeons, neurologists, neuropathologists, neuroradiologists, radiation and medical oncologists and clinical trial experts. The task made clearer and more transparent choices about outcomes considered most relevant through searching the references considered most relevant and evaluating their value. The scientific evidence of papers collected from the literature was evaluated and graded based on the Oxford Centre for Evidence-based Medicine Levels of Evidence and recommendations were given accordingly. The recommendations will provide a framework and assurance for the strategy of diagnostic and therapeutic measures to reduce complications from unnecessary treatment and cost. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China.
Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs.
Tumor angiogenesis is of paramount importance in solid tumor development. Elevated serum levels of YKL-40, a secreted heparin-binding glycoprotein have been associated with a worse prognosis from a variety of advanced human cancers. Yet the role of YKL-40 activity in these cancers is still missing. Here, we have shown that ectopic expression of YKL-40 in MDA-MB-231 breast cancer cells and HCT-116 colon cancer cells led to larger tumor formation with an extensive angiogenic phenotype than did control cancer cells in mice. Affinity purified recombinant YKL-40 protein promoted vascular endothelial cell angiogenesis in vitro, the effects similar to the activities observed using MDA-MB-231 and HCT-116 cell conditioned medium after transfection with YKL-40. Further, YKL-40 was found to induce the coordination of membrane-bound receptor syndecan-1 and integrin αvβ3 and activate an intracellular signaling cascade including focal adhesion kinase and MAP kinase Erk1/2 in endothelial cells. Also, blockade of YKL-40 using siRNA gene knockdown suppressed tumor angiogenesis in vitro and in vivo. Immunohistochemical analysis of human breast cancer revealed a correlation between YKL-40 expression and blood vessel density. These findings provide novel insights into angiogenic activities and molecular mechanisms of YKL-40 in cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.