Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.
Climate change is expected to accelerate the hydrologic cycle, increase the fraction of precipitation that is rain, and enhance snowpack melting. The enhanced hydrological cycle is also expected to increase snowfall amounts due to increased moisture availability. These processes are examined in this paper in the Colorado Headwaters region through the use of a coupled high-resolution climate-runoff model. Four high-resolution simulations of annual snowfall over Colorado are conducted. The simulations are verified using Snowpack Telemetry (SNOTEL) data. Results are then presented regarding the grid spacing needed for appropriate simulation of snowfall. Finally, climate sensitivity is explored using a pseudo-global warming approach. The results show that the proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing and parameterizations. The pseudo-global warming simulations indicate enhanced snowfall on the order of 10%-25% over the Colorado Headwaters region, with the enhancement being less in the core headwaters region due to the topographic reduction of precipitation upstream of the region (rain-shadow effect). The main climate change impacts are in the enhanced melting at the lower-elevation bound of the snowpack and the increased snowfall at higher elevations. The changes in peak snow mass are generally near zero due to these two compensating effects, and simulated wintertime total runoff is above current levels. The 1 April snow water equivalent (SWE) is reduced by 25% in the warmer climate, and the date of maximum SWE occurs 2-17 days prior to current climate results, consistent with previous studies.
With the aim of developing a fully coupled atmosphere-hydrology model system, the Weather Research and Forecasting (WRF) model was enhanced by integrating a new set of hydrologic physics parameterizations accounting for lateral water flow occurring at the land surface. The WRF-Hydro modeling system was applied for a 3 year long simulation in the Crati River Basin (Southern Italy), where output from the fully coupled WRF/WRF-Hydro was compared to that provided by original WRF model. Prior to performing coupled land-atmosphere simulations, the stand-alone hydrological model (''uncoupled'' WRF-Hydro) was calibrated through an automated procedure and validated using observed meteorological forcing and streamflow data, achieving a Nash-Sutcliffe Efficiency value of 0.80 for 1 year of simulation. Precipitation, runoff, soil moisture, deep drainage, and land surface heat fluxes were compared between WRF-only and WRF/WRF-Hydro simulations and validated additionally with ground-based observations, a FLUXNET site, and MODIS-derived LST. Since the main rain events in the study area are mostly dependent on the interactions between the atmosphere and the surrounding Mediterranean Sea, changes in precipitation between modeling experiments were modest. However, redistribution and reinfiltration of local infiltration excess produced higher soil moisture content, lower overall surface runoff, and higher drainage in the fully coupled model. Higher soil moisture values in WRF/WRF-Hydro slightly influenced precipitation and also increased latent heat fluxes. Overall, the fully coupled model tended to show better performance with respect to observed precipitation while allowing more water to circulate in the modeled regional water cycle thus, ultimately, modifying long-term hydrological processes at the land surface.
During the second week of September 2013, a seasonally uncharacteristic weather pattern stalled over the Rocky Mountain Front Range region of northern Colorado bringing with it copious amounts of moisture from the Gulf of Mexico, Caribbean Sea, and the tropical eastern Pacific Ocean. This feed of moisture was funneled toward the east-facing mountain slopes through a series of mesoscale circulation features, resulting in several days of unusually widespread heavy rainfall over steep mountainous terrain. Catastrophic flooding ensued within several Front Range river systems that washed away highways, destroyed towns, isolated communities, necessitated days of airborne evacuations, and resulted in eight fatalities. The impacts from heavy rainfall and flooding were felt over a broad region of northern Colorado leading to 18 counties being designated as federal disaster areas and resulting in damages exceeding $2 billion (U.S. dollars). This study explores the meteorological and hydrological ingredients that led to this extreme event. After providing a basic timeline of events, synoptic and mesoscale circulation features of the event are discussed. Particular focus is placed on documenting how circulation features, embedded within the larger synoptic flow, served to funnel moist inflow into the mountain front driving several days of sustained orographic precipitation. Operational and research networks of polarimetric radar and surface instrumentation were used to evaluate the cloud structures and dominant hydrometeor characteristics. The performance of several quantitative precipitation estimates, quantitative precipitation forecasts, and hydrological forecast products are also analyzed with the intention of identifying what monitoring and prediction tools worked and where further improvements are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.