The concept of tumor stem cells (TSCs) provides a new paradigm for understanding tumor biology, although it remains unclear whether TSCs will prove to be a more robust model than traditional cancer cell lines. We demonstrate marked phenotypic and genotypic differences between primary human tumor-derived TSCs and their matched glioma cell lines. Unlike the matched, traditionally grown tumor cell lines, TSCs derived directly from primary glioblastomas harbor extensive similarities to normal neural stem cells and recapitulate the genotype, gene expression patterns, and in vivo biology of human glioblastomas. These findings suggest that TSCs may be a more reliable model than many commonly utilized cancer cell lines for understanding the biology of primary human tumors.
Context
Attempts to determine the clinical significance of BRCA1/2 mutations in ovarian cancer (OvCa) have produced conflicting results.
Objective
To determine the relationships between BRCA1/2 deficiency (i.e., mutation and promoter hypermethylation) and overall survival (OS), progression-free survival (PFS), chemotherapy response, and whole exome mutation rate in OvCa.
Design, Setting, and Patients
Observational study of multidimensional genomics and clinical data on 316 high-grade serous OvCa cases that were made public between 2009 and 2010 via The Cancer Genome Atlas project.
Main Outcome Measures
OS and PFS rates (primary outcomes) and chemotherapy response (secondary outcome).
Results
BRCA2 mutations (29 cases) were associated with significantly better OS (adjusted hazard ratio [HR], 0.33; 95% CI, 0.16–0.69, P=0.003; 5-year OS: 61% for BRCA2 mutated vs. 25% for BRCA wild-type [wt] cases) and PFS (adjusted HR, 0.40; 95% CI, 0.22–0.74, P=0.004; 3-year PFS: 44% for BRCA2 mutated vs. 16% for BRCA wt cases), whereas neither BRCA1 mutations (37 cases) nor BRCA1 methylation (33 cases) were associated with prognosis. Moreover, BRCA2 mutations were associated with a significantly higher primary chemotherapy sensitivity rate (100% for BRCA2 mutated vs. 82% [P=0.02] and 80% [P=0.05] for BRCA wt and BRCA1 mutated cases, respectively) and longer platinum-free duration (median platinum-free duration: 18.0 months for BRCA2 mutated vs. 11.7 [P=0.02] and 12.5 [P=0.04] months for BRCA wt and BRCA1 mutated cases, respectively). Further investigation revealed that BRCA2 mutated, but not BRCA1 mutated cases, exhibited a “mutator phenotype” by containing significantly more mutations than BRCA wt cases across the whole exome (median mutation number per sample: 84 for BRCA2 mutated vs. 52 for BRCA wt cases, false-discovery rate <0.1).
Conclusions
BRCA2 mutation, but not BRCA1 deficiency, is associated with improved survival, chemotherapy response, and genome instability compared with BRCA wild-type.
Despite similarities between tumor-initiating cells with stem-like properties (TICs) and normal neural stem cells, we hypothesized that there may be differences in their differentiation potentials. We now demonstrate that both bone morphogenetic protein (BMP)-mediated and ciliary neurotrophic factor (CNTF)-mediated Jak/STAT-dependent astroglial differentiation is impaired due to EZH2-dependent epigenetic silencing of BMP receptor 1B (BMPR1B) in a subset of glioblastoma TICs. Forced expression of BMPR1B either by transgene expression or demethylation of the promoter restores their differentiation capabilities and induces loss of their tumorigenicity. We propose that deregulation of the BMP developmental pathway in a subset of glioblastoma TICs contributes to their tumorigenicity both by desensitizing TICs to normal differentiation cues and by converting otherwise cytostatic signals to proproliferative signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.