High peritumoral M-CSF and M Phi were associated with HCC progression, disease recurrence, and poor survival after hepatectomy, highlighting the importance of peritumoral tissue in the recurrence and metastasis of HCC. M-CSF and M Phi may be targets of postoperative adjuvant therapy.
Background: Although high doses of ionizing radiation have long been linked to circulatory disease, evidence for an association at lower exposures remains controversial. However, recent analyses suggest excess relative risks at occupational exposure levels.Objectives: We performed a systematic review and meta-analysis to summarize information on circulatory disease risks associated with moderate- and low-level whole-body ionizing radiation exposures.Methods: We conducted PubMed/ISI Thomson searches of peer-reviewed papers published since 1990 using the terms “radiation” AND “heart” AND “disease,” OR “radiation” AND “stroke,” OR “radiation” AND “circulatory” AND “disease.” Radiation exposures had to be whole-body, with a cumulative mean dose of < 0.5 Sv, or at a low dose rate (< 10 mSv/day). We estimated population risks of circulatory disease from low-level radiation exposure using excess relative risk estimates from this meta-analysis and current mortality rates for nine major developed countries.Results: Estimated excess population risks for all circulatory diseases combined ranged from 2.5%/Sv [95% confidence interval (CI): 0.8, 4.2] for France to 8.5%/Sv (95% CI: 4.0, 13.0) for Russia.Conclusions: Our review supports an association between circulatory disease mortality and low and moderate doses of ionizing radiation. Our analysis was limited by heterogeneity among studies (particularly for noncardiac end points), the possibility of uncontrolled confounding in some occupational groups by lifestyle factors, and higher dose groups (> 0.5 Sv) generally driving the observed trends. If confirmed, our findings suggest that overall radiation-related mortality is about twice that currently estimated based on estimates for cancer end points alone (which range from 4.2% to 5.6%/Sv for these populations).
Transplant arteriosclerosis (TA) is the hallmark of chronic allograft dysfunction (CAD) affecting transplanted organs in the long term [1,2]. These fibroproliferative lesions lead to neointimal thickening of arteries in all transplanted allografts [2]. Luminal narrowing then leads to graft ischemia and organ demise. To date, there are no known tolerance induction strategies that prevent TA [3,4]. Therefore, this study was designed to test the hypothesis that human regulatory T cells (Treg cells) expanded ex vivo could prevent TA. Here we show the comparative capacity of Treg cells, sorted via two separate strategies, to prevent TA in a clinically relevant chimeric humanized mouse system. We found that the in vivo development of TA in human arteries was prevented with the treatment of ex vivo expanded human Treg cells. Additionally, we show that Treg cells sorted based on the low expression of CD127 (IL-7Rα) provide a more potent therapy to conventional Treg cells. Our results demonstrate, for the first time, that human Treg cells can inhibit TA by impairing effector function and graft infiltration. We anticipate our findings to serve as a foundation for the clinical development of therapeutics targeting TA in both allograft transplantation and other immune-mediated causes of vasculopathy [5].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.