The boreal forests, identified as a critical “tipping element” of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change–induced droughts continue to intensify.
Bamboo is widely distributed in Southeast Asia, Africa, and Latin America. As a major non-wood forest product and wood substitute, bamboo is of increasing interest to ecologists owing to its rapid growth and correspondingly high potential for mitigating climate change. With a long history of production and utilization of bamboo, China is one of the countries with the richest bamboo resources and largest area of bamboo forest, and has paid unprecedented attention in recent decades to management of its bamboo forests. This review summarizes the versatility of bamboo in terms of its ecological benefits including carbon sequestration, water and soil conservation, its benefits for socioeconomic development, and its potential to mitigate climate change. Current problems, and the future potential of and challenges to rapidly expanding bamboo forests under both wider use of intensive management and the effects of global warming, are also discussed.
The Grain for Green Program (GGP), initiated in 1999, is the largest ecological restoration project in central and western China. Here, for the first time, we performed a meta-analysis and found that the GGP largely increased the soil organic carbon (SOC). The SOC was increased by 48.1%, 25.4%, and 25.5% at soil depths of 0–20 cm, 20–40 cm, and 40–60 cm, respectively. Moreover, this carbon accumulation has significantly increased over time since GGP implementation. The carbon accumulation showed a significantly more active response to the GGP in the top 20 cm of soil than in the deeper soil layers. Conversion of cropland to forest could lead to significantly greater SOC accumulation than would the conversion of cropland to grassland. Conversion from cropland to woodland could lead to greater SOC accumulation than would the conversion to either shrubland or orchard. Our results suggest that the GGP implementation caused SOC to accumulate and that there remains a large potential for further accumulation of carbon in the soil, which will help to mitigate climate change in the near future.
Abstract.A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH 4 ) biogeochemistry module (incorporating CH 4 production, oxidation, and transportation processes) and a water table module to investigate CH 4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH 4 emission processes from wetlands are r (defined as the CH 4 to CO 2 release ratio) and Q 10 in the CH 4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q 10 for CH 4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH 4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.