Introduction An [18F] labeled PET amyloid (Aβ) imaging agent could facilitate clinical evaluation of late-life cognitive impairment by providing an objective measure for Alzheimer’s disease (AD) pathology. Here we present the results of the first clinical trial with [18F]AV-45 (Florbetapir F 18). Methods An open-label, multicenter, brain imaging, metabolism and safety study of [18F]AV-45 was performed on 16 patients with Alzheimer’s disease (AD: MMSE 19.3 +/− 3.1; Age 75.8 +/− 9.2) and 16 cognitively healthy controls (HC: MMSE 29.8 +/− 0.45; Age 72.5 +/− 11.6 ). Dynamic PET imaging was performed over a period of approximately 90 minutes following 10 mCi injection of the tracer. Standard uptake values (SUV) and cortical to cerebellum SUV ratios (SUVR) were calculated. A simplified reference tissue method was used to generate distribution volume ratio (DVR) parametric maps in a subset of subjects Results Valid PET imaging data were available for 11 AD and 15 HC subjects [18F]AV-45 accumulated in cortical regions expected to be high in amyloid deposition (e.g., precuneus, frontal and temporal cortex) of AD patients; minimal accumulation of tracer was seen in cortical regions of HC subjects. The cortical to cerebellar SUVR values in AD patients showed continual substantial increases through 30 minutes post-administration, reaching a plateau within 50 minutes. The 10 minute period from 50–60 minutes post administration was taken as a representative sample for further analysis. The cortical average SUVR for this period was 1.67 +/− 0.175 for patients with AD vs. 1.25 +/− 0.177 for HC subjects. Spatially normalized DVRs generated from PET dynamic scans were highly correlated with SUVR (r= 0.58–0.88, p<0.005) and were significantly greater for AD patients than for HC subjects in cortical regions, but not in subcortical white matter or cerebellar regions. There were no clinically significant changes in vital signs, ECG or laboratory values. Conclusions [18F]AV-45 was well tolerated and PET imaging showed significant discrimination between AD patients and HC subjects using either a parametric reference region method (DVR) or a simplified SUVR calculated from 10 minutes of scanning 50–60 minutes after [18F]AV-45 administration.
Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by motor and phonic tics. Obsessivecompulsive disorder (OCD) is often concomitant with TS. Dysfunctional tonic and phasic dopamine (DA) and serotonin (5-HT) metabolism may play a role in the pathophysiology of TS. We simultaneously measured the density, affinity, and brain distribution of dopamine D 2 receptors (D 2 -R's), dopamine transporter binding potential (BP), and amphetamine-induced dopamine release (DA rel ) in 14 adults with TS and 10 normal adult controls. We also measured the brain distribution and BP of serotonin 5-HT 2A receptors (5-HT 2A R), and serotonin transporter (SERT) BP, in 11 subjects with TS and 10 normal control subjects. As compared with controls, DA rel was significantly increased in the ventral striatum among subjects with TS. Adults with TS + OCD exhibited a significant D 2 -R increase in left ventral striatum. SERT BP in midbrain and caudate/putamen was significantly increased in adults with TS (TS + OCD and TS-OCD). In three subjects with TS + OCD, in whom D 2 -R, 5-HT 2A R, and SERT were measured within a 12-month period, there was a weakly significant elevation of DA rel and 5-HT 2A BP, when compared with TS-OCD subjects and normal controls. The current study confirms, with a larger sample size and higher resolution PET scanning, our earlier report that elevated DA rel is a primary defect in TS. The finding of decreased SERT BP, and the possible elevation in 5-HT 2A R in individuals with TS who had increased DA rel , suggest a condition of increased phasic DA rel modulated by low 5-HT in concomitant OCD.
Several studies have examined the link between the cannabinoid CB1 receptor and several neuropsychiatric illnesses, including schizophrenia. As such, there is a need for in vivo imaging tracers so that the relationship between CB1 and schizophrenia (SZ) can be further studied. In this paper, we present our first human studies in both healthy control patients and patients with schizophrenia using the novel PET tracer, [(11)C]OMAR (JHU75528), we have shown its utility as a tracer for imaging human CB1 receptors and to investigate normal aging and the differences in the cannabinoid system of healthy controls versus patients with schizophrenia. A total of ten healthy controls and nine patients with schizophrenia were included and studied with high specific activity [(11)C]OMAR. The CB1 binding (expressed as the distribution volume; V(T)) was highest in the globus pallidus and the cortex in both controls and patients with schizophrenia. Controls showed a correlation with the known distribution of CB1 and decline of [(11)C]OMAR binding with age, most significantly in the globus pallidus. Overall, we observed elevated mean binding in patients with schizophrenia across all regions studied, and this increase was statistically significant in the pons (p<0.05), by the Students t-test. When we ran a regression of the control subjects V(T) values with age and then compared the patient data to 95% prediction limits of the linear regression, three patients fell completely outside for the globus pallidus, and in all other regions there were at least 1-3 patients outside of the prediction intervals. There was no statistically significant correlations between PET measures and the individual Brief Psychiatry Rating Score (BPRS) subscores (r=0.49), but there was a significant correlation between V(T) and the ratio of the BPRS psychosis to withdrawal score in the frontal lobe (r=0.60), and middle and posterior cingulate regions (r=0.71 and r=0.79 respectively). In conclusion, we found that [(11)C] OMAR can image human CB1 receptors in normal aging and schizophrenia. In addition, our initial data in subjects with schizophrenia seem to suggest an association of elevated binding specific brain regions and symptoms of the disease.
These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.