With this work, we demonstrate a three-stage degradation behavior of GaN based LED chips under current/thermal co-stressing. The three stages in sequence are the initial improvement stage, the platform stage, and the rapid degradation stage, indicating that current/thermal co-stressing activates positive effects and negative ones simultaneously, and the dominant degradation mechanisms evolve with aging time. Degradation mechanisms are discussed. Electric current stress has dual characters: damaging the active layers by generating defects and at the same time improving the p-type conductivity by activating the Mg-dopant. High temperature stresses will promote the effects from electric current stresses. The activation of the Mg-dopant will saturate, whereas the generation of defects is carried on in a progressive way. Other mechanisms, such as deterioration of ohmic contacts, also operate. These mechanisms compete/cooperate with each other and evolve with aging time, resulting in the observed three-stage degradation behavior. There exist risks to predict the lifetime of LEDs by a model with a constant accelerated factor.
We report significantly improved electrostatic discharge (ESD) properties of InGaN/GaN-based light-emitting diodes (LEDs) with inserting Si-delta-doped layers between multiple quantum wells and n-cladding layer. The ESD endurance voltage increased from −1200 V to −4000 V with the insertion of delta-doped layers. The mechanism of the enhanced ESD properties was then investigated. According to capacitance-voltage results, the factor of capacitance modulation was ruled out. However, infrared microscopy image proved better current spreading in the LEDs with delta-doped layers. In addition, current-voltage, photoluminescence, and atomic force microscope measurements demonstrated substantial quality improvements. These two reasons were considered as the dominant mechanisms of the enhanced ESD properties.
The luminescence properties of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with different quantum-well (QW) thicknesses were investigated. It is found that with decreasing the QW thicknesses, the integrated intensities of the photoluminescence (PL) and electroluminescence (EL) peaks demonstrate a contrary changing trend. The PL results show that the luminescence efficiency is improved by using thinner QWs. However, in the EL process, such a positive effect is counteracted by the low carrier injection efficiency in the thin QW LEDs, and consequently leads to a lower light output. Based on our experimental results, it is inferred that the tunneling leakage current associated with dislocations should be responsible for the low carrier-injection efficiency and the observed weaker EL integrated intensity of the LEDs with thin QWs.
In this study, we systematically investigate the effect of InGaN insertion layer (IL) on nitride-based light-emitting diodes. First, a series of samples with different InGaN ILs (Si doping level, thickness) were fabricated and investigated. An optimized condition of the IL was obtained based on current–voltage and electroluminescence measurements. Furthermore, in order to investigate the dominant mechanism for the improved performance of the samples with IL, the optimized sample and a control sample without InGaN IL were compared by means of X-ray diffraction, atomic force microscopy, photoluminescence, injection-current-dependent electroluminescence measurements and infrared camera images. Based on the discussion of these measurement results, we conclude that the performance improvements of samples with InGaN IL are due to both the effects of strain relaxation and better current spreading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.