Abstract:Background: The aim of this study was to explore the mechanism by which amentoflavone (AME) improves insulin resistance in a human hepatocellular liver carcinoma cell line (HepG2). Methods: A model of insulin resistant cells was established in HepG2 by treatment with high glucose and insulin. The glucose oxidase method was used to detect the glucose consumption in each group. To determine the mechanism by which AME improves insulin resistance in HepG2 cells, enzyme-linked immunosorbent assay (ELISA) and western blotting were used to detect the expression of phosphatidyl inositol 3-kinase (PI3K), Akt, and pAkt; the activity of the enzymes involved in glucose metabolism; and the levels of inflammatory cytokines. Results: Insulin resistance was successfully induced in HepG2 cells. After treatment with AME, the glucose consumption increased significantly in HepG2 cells compared with the model group (MG). The expression of PI3K, Akt, and pAkt and the activity of 6-phosphofructokinas (PFK-1), glucokinase (GCK), and pyruvate kinase (PK) increased, while the activity of glycogen synthase kinase-3 (GSK-3), phosphoenolpyruvate carboxylase kinase (PEPCK), and glucose-6-phosphatase (G-6-Pase) as well as the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and C reactive protein (CRP) decreased. Conclusions: The mechanism by which treatment with AME improves insulin resistance in HepG2 cells may involve the PI3K-Akt signaling pathway, the processes of glucose oxygenolysis, glycogen synthesis, gluconeogenesis and inflammatory cytokine expression.
Catalpol, an iridoid glycoside extracted from Rehmannia glutinosa, has been found to ameliorate diabetic nephropathy (DN), but the mechanism has not been clarified. Podocyte injury play a key role in the pathogenesis of DN. This study mainly investigated the protective effect and potential mechanism of catalpol on podocyte injury of DN in vivo and in vitro. The results indicated that the pathological features of DN in mice were markedly ameliorated after treatment with catalpol. Moreover, podocyte foot process effacement, and down-regulation of nephrin and synaptopodin expression in DN mice were also significantly improved after treatment with catalpol. In vitro, catalpol rescued disrupted cytoskeleton and increased migration ratio in podocytes induced by high glucose, the effect might be attributable to the inhibition of RhoA and Cdc42 activities but not Rac1. Furthermore, the impaired podocyte autophagy in DN mice was significantly enhanced after catalpol treatment. And catalpol also enhanced autophagy and lysosome biogenesis in cultured podocytes under high glucose condition. In addition, we found that catalpol could inhibit mTOR activity and promote TFEB nuclear translocation in vivo and in vitro experiments. Our study demonstrated that catalpol could ameliorate podocyte injury in DN, and the protective effect of catalpol might be attributed to the stabilization of podocyte cytoskeleton and the improvement of impaired podocyte autophagy.
Corydalis humosa Migo is a traditional Chinese medicine that clears away damp heat, relieves sore. Protopine (PRO) is an alkaloid component isolated from C. humosa Migo. However, the role of protopine in acute kidney injury (AKI) has not yet been reported. This study aims to investigate the effect and mechanism of protopine isolated from C. humosa Migo on lipopolysaccharide (LPS)-induced AKI in mice. Inflammation accumulation was assessed by small animal living imaging. The blood urea nitrogen (BUN), and serum creatinine (Scr) were measured to assess the effects of protopine on renal function in LPS-induced AKI. The levels of tumor necrosis factor (TNF), interleukin-2 (IL-2), interferon-γ (IFN-γ), and (interleukin-10) IL-10 in serum were detected by cytometric bead array. Flow cytometry was used to detect the levels of reactive oxygen species (ROS) in primary kidney cells. The proportions of granulocytes, neutrophils, and macrophages in peripheral blood were examined to evaluate the effect of protopine on immune cells in mice with AKI. Toll-like receptor (TLR4) and apoptotic signaling pathway were detected by Western blot analysis. The results showed that protopine markedly improved the renal function, relieve inflammation, reversed inflammatory cytokines, transformed apoptosis markers, and regulated the TLR4 signaling pathway in mice with AKI induced by LPS. The protopine isolated from C. humosa Migo protected mice against LPS-induced AKI by inhibiting apoptosis and inflammation via the TLR4 signaling pathway, thus providing a molecular basis for a novel medical treatment of AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.