The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a "cohesinopathy." Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development.
Obesity is a highly prevalent, multigenic trait that predicts increased morbidity and mortality. Here we report results from a genome scan based on 354 markers in 513 members of 92 nuclear families ascertained through extreme obesity and normal body weight. The average marker interval was approximately 10 cM. We examined four correlated obesity phenotypes, including the body-mass index (BMI) (both as a quantitative trait and as a discrete trait with a threshold of BMI > or /=30 kg/m2) and percentage of fat (both as a quantitative trait and as a discrete trait with a threshold of 40%) as assessed by bioelectrical impedance. In the initial stage of the genome scan, four markers in 20q gave positive evidence for linkage, which was consistent across most obesity phenotypes and analytic methods. After saturating 20q with additional markers (25 markers total) in an augmented sample of 713 members from 124 families, we found linkage to several markers in a region, 20q13, previously implicated in both human and animal studies. Three markers (D20S107, D20S211, and D20S149) in 20q13 had empirical P values (based on Monte Carlo simulations, which controlled for multiple testing) < or /=. 01 for single-point analysis. In addition, the parametric, affecteds-only analysis for D20S476 yielded a LOD score of 3.06 (P=. 00009), and the affected-sib-pair test yielded a LOD score of 3.17 (P=.000067). Multipoint analyses further strengthened and localized these findings. This region includes several plausible candidate genes for obesity. Our results suggest that one or more genes affecting obesity are located in 20q13.
PANDER (PANcreatic DERived factor, FAM3B), a newly discovered secreted cytokine, is specifically expressed at high levels in the islets of Langerhans of the endocrine pancreas. To evaluate the role of PANDER in -cell function, we investigated the effects of PANDER on rat, mouse, and human pancreatic islets; the -TC3 cell line; and the ␣-TC cell line. PANDER protein was present in ␣-and -cells of pancreatic islets, insulinsecreting -TC3 cells, and glucagon-secreting ␣-TC cells. PANDER induced islet cell death in rat and human islets. Culture of -TC3 cells with recombinant PANDER had a dose-dependent inhibitory effect on cell viability. This effect was also time-dependent. PANDER caused apoptosis of -cells as assessed by electron microscopy, annexin V fluorescent staining, and flow-cytometric terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay. PANDER did not affect cytosolic Ca 2؉ levels or nitric oxide levels. However, PANDER activated caspase-3. Hence, PANDER may have a role in the process of pancreatic -cell apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.