Exosomes, also known as extracellular vesicles, are naturally occurring, biocompatible, and bioacive nanoparticles ranging from 40 to 150 nm in diameter. Bone-secreted exosomes play important roles in bone homeostasis, the interruption of which can lead to diseases such as osteoporosis, rheumatoid arthritis, and osteopetrosis. Though the relationship between vascular and bone homeostasis has been recognized recently, the role of vascular endothelial cell (EC)-secreted exosomes (EC-Exos) in bone homeostasis is not well understood. Herein, we found that EC-Exos show more efficient bone targeting than osteoblast-derived exosomes or bone marrow mesenchymal stem cell-derived exosomes. We also found that EC-Exos can be internalized by bone marrow-derived macrophages (BMMs) to alter their morphology. EC-Exos can inhibit osteoclast activity in vitro and inhibit osteoporosis in an ovariectomized mouse model. Sequencing of exosome miRNA revealed that miR-155 was highly expressed in EC-Exos-treated BMMs. The miR-155 level in EC-Exos was much higher than that in BMMs and ECs, indicating that miR-155 was endogenous cargo of EC-derived vesicles. Blockage of BMMs miR-155 levels reversed the suppression by EC-Exos of osteoclast induction, confirming that exosomal miR-155 may have therapeutic potential against osteoporosis. Taken together, our findings suggest that EC-Exos may be utilized as a bone targeting and nontoxic nanomedicine for the treatment of bone resorption disorders.
Osteoporosis is a metabolic bone disease characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content. The imbalance between osteogenesis by osteoblasts and osteoclastogenesis by osteoclasts contributes to the pathogenesis of postmenopausal osteoporosis. Estrogen withdrawal leads to increased levels of proinflammatory cytokines. Overactivated osteoclasts by inflammation play a vital role in the imbalance. Matrine is an alkaloid found in plants from the Sophora genus with various pharmacological effects, including anti-inflammatory activity. Here we demonstrate that matrine significantly prevented ovariectomy-induced bone loss and inhibited osteoclastogenesis in vivo with decreased serum levels of TRAcp5b, TNF-α, and IL-6. In vitro matrine significantly inhibited osteoclast differentiation induced by receptor activator for NF-κB ligand (RANKL) and M-CSF in bone marrow monocytes and RAW264.7 cells as demonstrated by tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption through pit formation assays. For molecular mechanisms, matrine abrogated RANKL-induced activation of NF-κB, AKT, and MAPK pathways and suppressed osteoclastogenesis-related marker expression, including matrix metalloproteinase 9, NFATc1, TRAP, C-Src, and cathepsin K. Our study demonstrates that matrine inhibits osteoclastogenesis through modulation of multiple pathways and that matrine is a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.—Chen, X., Zhi, X., Pan, P., Cui, J., Cao, L., Weng, W., Zhou, Q., Wang, L., Zhai, X. Zhao, Q., Hu, H., Huang, B., Su, J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis.
The actin-bundling protein L-plastin (LPL) mediates the resorption activity of osteoclasts, but its therapeutic potential in pathological bone loss remains unexplored. Here, we report that LPL knockout mice show increased bone mass and cortical thickness with more mononuclear tartrate-resistant acid phosphatase–positive cells, osteoblasts, CD31hiEmcnhi endothelial vessels, and fewer multinuclear osteoclasts in the bone marrow and periosteum. LPL deletion impeded preosteoclasts fusion by inhibiting filopodia formation and increased the number of preosteoclasts, which release platelet-derived growth factor-BB to promote CD31hiEmcnhi vessel growth and bone formation. LPL expression is regulated by the phosphatidylinositol 3-kinase/AKT/specific protein 1 axis in response to receptor activator of nuclear factor–κB ligand. Furthermore, we identified an LPL inhibitor, oroxylin A, that could maintain bone mass in ovariectomy-induced osteoporosis and accelerate bone fracture healing in mice. In conclusion, we showed that LPL regulates osteoclasts fusion, and targeting LPL serves as a novel anabolic therapy for pathological bone loss.
Receptor activator of NF-jB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter-driven Cre expression (Adipoq Cre ) can target bone marrow adipose lineage cells. We cross the Adipoq Cre mice with rankl fl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. Adipoq Cre ; rankl fl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)-induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.