Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24-/- mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24-/- MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 R24C ) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.Epstein-Barr virus | episome | viral persistence
Nasopharyngeal carcinoma (NPC) is a common disease in Hong Kong and southern provinces of China. EBV infection is believed to play a critical role in the development of NPC. Previous studies on the transformation mechanism of EBV genes were mostly performed in either NPC or nonnasopharyngeal epithelial cells which may not be representative of premalignant nasopharyngeal epithelial cells. Establishment of a representative cell system would greatly facilitate the elucidation of the role of EBV infection in the development of NPC. Using telomerase alone, we were able to establish an immortalized nasopharyngeal epithelial cell line from primary nonmalignant nasopharyngeal biopsies. The telomerase‐immortalized nasopharyngeal epithelial cells are largely diploid in karyotype. Interestingly, this newly immortalized nasopharyngeal epithelial cell line, referred as NP460hTert, harbors genetic alterations previously identified in premalignant and malignant nasopharyngeal epithelial cells. These include inactivation of p16 by homozygous deletion of the p16INK4A locus and downregulation of RASSF1A expression. The deletion of the p16INK4A locus appears to be the most crucial event for the immortalization of nasopharyngeal epithelial cells by telomerase and precedes RASSF1A downregulation. In addition, detailed analysis of the cytogenetic changes by conventional cytogenetics, spectral karyotyping (SKY) and array‐based CGH revealed a gain of a 17q21‐q25 fragment on 11p15 chromosome in all NP460hTert cells which occurred before deletion of the p16INK4A locus. Gain of 17q has been previously reported in NPC. In addition, activation of NF‐κB was observed in immortalized NP460hTert cells at the later population doublings, and may play a role in the survival of immortalized NP epithelial cells. Id1 which is commonly expressed in various human cancers, including NPC, was also upregulated in the immortalized NP460hTert cells. Thus, the establishment of an immortalized nasopharyngeal epithelial cell line harboring common genetic alterations present in premalignant and cancerous nasopharyngeal epithelial cells may provide a valuable cell system to examine for early events involved in NPC carcinogenesis, particularly in elucidating the role of EBV infection in NPC development. © 2006 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.