Breast cancer is a chief cause of cancer-related mortality that affects women worldwide. About 8% of cases are hereditary, and approximately half of these are associated with germline mutations of the breast tumor suppressor gene BRCA1 (refs. 1,2). We have previously reported a mouse model in which Brca1 exon 11 is eliminated in mammary epithelial cells through Cre-mediated excision. This mutation is often accompanied by alterations in transformation-related protein 53 (Trp53, encoding p53), which substantially accelerates mammary tumor formation. Here, we sought to elucidate the underlying mechanism(s) using mice deficient in the Brca1 exon 11 isoform (Brca1Delta11/Delta11). Brca1Delta11/Delta11 embryos died late in gestation because of widespread apoptosis. Unexpectedly, elimination of one Trp53 allele completely rescues this embryonic lethality and restores normal mammary gland development. However, most female Brca1Delta11/Delta11 Trp53+/- mice develop mammary tumors with loss of the remaining Trp53 allele within 6-12 months. Lymphoma and ovarian tumors also occur at lower frequencies. Heterozygous mutation of Trp53 decreases p53 and results in attenuated apoptosis and G1-S checkpoint control, allowing Brca1Delta11/Delta11 cells to proliferate. The p53 protein regulates Brca1 transcription both in vitro and in vivo, and Brca1 participates in p53 accumulation after gamma-irradiation through regulation of its phosphorylation and Mdm2 expression. These findings provide a mechanism for BRCA1-associated breast carcinogenesis.
Germline mutations in the tumor suppressor gene BRCA1 predispose women to breast cancer, however somatic mutations in the gene are rarely detected in sporadic cancers. To understand this phenomenon, we examined mouse models carrying conditional disruption of Brca1 in mammary epithelium in either p53 wild type (wt) or heterozygous backgrounds. Although a p53 +/7 mutation signi®cantly accelerated tumorigenesis, both strains developed mammary tumors in a stochastic fashion, suggesting that multiple factors, in addition to p53 mutations, may be involved in Brca1 related tumorigenesis. A unique feature of Brca1 mammary tumors is their highly diverse histopathology accompanied by severe chromosome abnormalities. The tumors also display extensive genetic/molecular alterations, including overexpression of ErbB2, c-Myc, p27 and Cyclin D1 in the majority of tumors, while they were virtually ERa and p16 negative. Translocations involving p53 were also identi®ed which lead to abnormal RNA and protein products. In addition, we generated cell lines from mammary tumors and found that the cells retained many of the genetic changes found in the primary tumors, suggesting that these genes may be players in Brca1-associated tumorigenesis. Despite their distinct morphology, all cultured tumor cells were Tamoxifen resistant but highly sensitive to Doxorubicin or girradiation, suggesting that these methods would be e ective in treatment of this disease. Oncogene (2001) 20, 7514 ± 7523.
The MRI technique has been used in diagnosis of manganism in humans and non-human primates. This cross-sectional study was designed to explore whether the pallidal signal intensity in T1-weighted MRI correlated with Mn levels in the blood compartment among Mn-exposed workers and to understand to what extent the MRI signal could reflect Mn exposure. A group of 18 randomly selected male Mn-exposed workers of which 13 were smelting workers with high exposure (mean of airborne Mn in work place: 1.26 mg/m 3 ; range: 0.31-2.93 mg/m 3 ), and 5 power distribution control workers with low exposure (0.66 mg/m 3 and 0.23-0.77 mg/m 3 ) from a ferroalloy factory, and another group of 9 male subjects as controls from a non-smelting factory who were office or cafeteria workers (0.01 mg/m 3 and 0-0.03 mg/m 3 ) were recruited for neurological tests, MRI examination, and analysis of Mn in whole blood (MnB), plasma (MnP) or red blood cells (MnRBC). No clinical symptoms and signs of manganism were observed among these workers. MRI data showed average increases of 7.4% (p < 0.05) and 16.1% (p < 0.01) in pallidal index (PI) among low-and high-exposed workers, respectively, as compared to controls. Fourteen out of 18 Mn-exposed workers (78%) had intensified PI values, while this proportion was even higher (85%) among the high Mn-exposed workers. Among exposed workers, the PI values were significantly associated with MnRBC (r = 0.55, p = 0.02). Our data suggest that the workers exposed to airborne Mn, but without clinical symptoms, display an exposure-related, intensified MRI signal. The MRI, as well as MnRBC, may be useful in early diagnosis of Mn exposure.
BackgroundSTAT3 signaling plays the pivotal role in tumorigenesis through EZH2 epigenetic modification, which enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3. Here, another possible feedback mechanism and clinical significance of EZH2 and STAT3 were investigated in gastric cancer (GC).MethodsSTAT3, p-STAT3 (Tyr 705) and EZH2 expression were examined in 63 GC specimens with matched normal tissues by IHC staining. EZH2 and STAT3 were also identified in five GC cell lines using RT-PCR and western blot analyses. p-STAT3 protein was detected by western blotting. In order to investigate whether EZH2 expression was directly regulated by STAT3, EZH2 expression was further detected using siRNA for STAT3 or IL-6 stimulation, with dual luciferase reporter analyses, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. The clinical significance of STAT3, p-STAT3 and EZH2 expression was evaluated by multi-factor COX regression and Kaplan-Meier analyses.ResultsHyper-activation of STAT3, p-STAT3 and EZH2 expression were observed in GC cells and tissues. STAT3 signaling was correlated with EZH2 expression in GC (R = 0.373, P = 0.003), which was consistent with our data showing that STAT3 as the transcriptional factor enhanced EZH2 transcriptional activity by binding the relative promoter region (-214 ~ -206). STAT3 was an independent signature for poor survival (P = 0.002). Patients with STAT3+/EZH2+ or p-STAT3+/EZH2+ had a worse outcome than others (P < 0.001); Besides, high levels of STAT3 and EZH2 was associated with advanced TNM staging (P = 0.017). Moreover, treatment with a combination of siSTAT3 and EZH2-specific inhibitor, 3-deazaneplanocin A (DZNEP), increased the apoptotic ratio of cells. It is benefit for targeting STAT3-EZH2 interplay in GC treatment.ConclusionsOur results indicate that STAT3 status mediated EZH2 upregulation, associated with advanced TNM stage and poor prognosis, suggesting that combination with knockdown of STAT3 and EZH2 inhibitor might be a novel therapy in GC treatment. Collectively, STAT3, p-STAT3 and EZH2 expression were provided for the precision medicine in GC patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0561-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.