Members of the microRNA (miR)-30 family have been reported to promote adipogenesis and inhibit osteogenesis, yet their role in the regulation of thermogenesis remains unknown. In this study, we show that miR-30b/c concentrations are greatly increased during adipocyte differentiation and are stimulated by cold exposure or the β-adrenergic receptor activator. Overexpression and knockdown of miR-30b and -30c induced and suppressed, respectively, the expression of thermogenic genes such as UCP1 and Cidea in brown adipocytes. Forced expression of miR-30b/c also significantly increased thermogenic gene expression and mitochondrial respiration in primary adipocytes derived from subcutaneous white adipose tissue, demonstrating a promoting effect of miRNAs on the development of beige fat. In addition, knockdown of miR-30b/c repressed UCP1 expression in brown adipose tissue in vivo. miR-30b/c targets the 3′-untranslated region of the receptor-interacting protein 140 (RIP140), and overexpression of miR-30b/c significantly reduced RIP140 expression. Consistent with RIP140 as a target of miR-30b/c in regulating thermogenic gene expression, overexpression of RIP140 greatly suppressed the promoting effect of miR-30b/c on the expression of UCP1 and Cidea in brown adipocytes. Taken together, the data from our study identify miR-30b/c as a key regulator of thermogenesis and uncover a new mechanism underlying the regulation of brown adipose tissue function and the development of beige fat.
M2 polarization of macrophages is essential for their function in immunologic tolerance, which might promote tumorigenesis. However, the molecular mechanism behind the polarization process is not fully understood. Given that several lines of evidence have suggested that long noncoding RNAs (lncRNAs) could be involved in regulating immune cell differentiation and function, the current study aimed to identify the lncRNAs that specifically modulate M2 macrophage polarization. By utilizing a series of cellbased M2 macrophage polarization models, a total of 25 lncRNAs with altered expression were documented based on lncRNA microarray-based profiling assays. Among them, lncRNA-MM2P was the only lncRNA upregulated during M2 polarization but downregulated in M1 macrophages. Knockdown of lncRNA-MM2P blocked cytokine-driven M2 polarization of macrophages and weakened the angiogenesis-promoting feature of M2 macrophages by reducing phosphorylation on STAT6. Moreover, manipulating lncRNA-MM2P in macrophages impaired macrophagemediated promotion of tumorigenesis, tumor growth in vivo, and tumor angiogenesis. Collectively, our study identifies lncRNA-MM2P as a modulator required for macrophage M2 polarization and uncovers its role in macrophage-promoted tumorigenesis.
Hypoxia is a common phenomenon occurring in the majority of human tumors and has been proved to play an important role in tumor progression. However, it remains unclear that whether the action of hypoxia on macrophages is a main driving force of hypoxia-mediated aggressive tumor behaviors. In the present study, we observe that high density of M2 macrophages is associated with metastasis in adenocarcinoma Non-Small Cell Lung Cancer (NSCLC) patients. By applying the in vivo hypoxia model, the results suggest that intermittent hypoxia significantly promotes the metastasis of Lewis lung carcinoma (LLC), accompanied with more CD209+ macrophages infiltrated in primary tumor tissue. More intriguingly, by skewing macrophages polarization away from the M1- to a tumor-promoting M2-like phenotype, hypoxia and IL-6 cooperate to enhance the LLC metastasis both in vitro and in vivo. In addition, we also demonstrate that skewing of macrophage M2 polarization by hypoxia relies substantially on activation of ERK signaling. Collectively, these observations unveil a novel tumor hypoxia concept involving the macrophage phenotype shift and provide direct evidence for lung cancer intervention through modulating the phenotype of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.