BackgroundExcessive immune‐mediated inflammatory reactions play a deleterious role in postinfarction ventricular remodeling. Interleukin‐37 (IL‐37) emerges as an inhibitor of both innate and adaptive immunity. However, the exact role of IL‐37 and IL‐37 plus troponin I (TnI)–treated dendritic cells (DCs) in ventricular remodeling after myocardial infarction (MI) remains elusive.Methods and Results MI was induced by permanent ligation of the left anterior descending artery. Our results showed that treatment with recombinant human IL‐37 significantly ameliorated ventricular remodeling after MI, as demonstrated by decreased infarct size, better cardiac function, lower mortality, restricted inflammatory responses, decreased myocardial fibrosis, and inhibited cardiomyocyte apoptosis. In vitro, we examined the phenotype of IL‐37 plus TnI–conditioned DCs of male C57BL/6 mice and their capacity to influence the number of regulatory T cells. Our results revealed that IL‐37 plus TnI–conditioned DCs obtained the characteristics of tolerogenic DCs (tDCs) and expanded the number of regulatory T cells when co‐cultured with splenic CD4+ T cells. Interestingly, we also found that adoptive transfer of these antigen‐loaded tDCs markedly increased the number of regulatory T cells in the spleen, attenuated the infiltration of inflammatory cells in the infarct hearts, decreased myocardial fibrosis, and improved cardiac function.ConclusionsOur results reveal a beneficial role of IL‐37 or tDCs treated with IL‐37 plus TnI in post‐MI remodeling that is possibly mediated by reestablishing a tolerogenic immune response, indicating that IL‐37 or adoptive transfer of IL‐37 plus TnI–treated tDCs may be a novel therapeutic strategy for ventricular remodeling after MI.
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI.
Background Interleukin-37 (IL-37) acts as an inhibitor of innate and adaptive immunity. However, the exact role of IL-37 in the patients with acute coronary syndrome (ACS) remains to be elucidated. Methods Patients were classified into 4 groups: normal coronary artery (NCA), stable angina (SA), unstable angina (UA), and acute myocardial infarction (AMI). The circulating Treg, Th1, and Th17 frequencies were measured. The effect of IL-37 on stimulated peripheral blood mononuclear cells (PBMCs) and the influence of IL-37 on DCs were explored. In addition, the role of IL-37-treated tDCs on Treg cell expansion and the stability of these tDCs were also tested. Results Our results showed that the circulating Treg frequencies were decreased, while Th1 and Th17 frequencies were increased in ACS patients, and that IL-37 expanded Tregs but suppressed Th1 and Th17 cells in activated PBMCs derived from ACS patients. Of note, IL-37-treated human DCs obtained a tolerogenic phenotype, and such tDCs promoted expansion of Tregs and decreased the Th1 and Th17 populations when cocultured with CD4+ T cells. Interestingly, IL-37-treated DCs from patients with ACS are phenotypically and functionally comparable to IL-37-treated DCs from NCA patients, and tolerogenic properties of IL-37-treated DCs were highly stable. Conclusion In conclusion, our results reveal a beneficial role of IL-37 in the patients with ACS and suggest that autologous IL-37-treated tDCs may be a novel therapeutic strategy for the patients with ACS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.