Immune checkpoint blockade represents a major breakthrough in cancer therapy, however responses are not universal. Genomic and immune features in pre-treatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of metastatic melanoma patients initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade (n=53) followed by programmed death-1 (PD-1) blockade at progression (n=46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In these studies, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade, and also demonstrate differential effects on the tumor microenvironment induced by CTLA-4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. Significance These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade, and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine, and should be explored in immune checkpoint blockade treatment across cancer types.
To understand why cancer vaccine-induced T cells often fail to eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund’s adjuvant (IFA), commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, Interferon-γ (IFN-γ) and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of anti-CD40 antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination site sequestration. A non-persisting vaccine formulation shifted T cell localization towards tumors, inducing superior anti-tumor activity while reducing systemic T cell dysfunction and promoting memory formation. Persisting peptide/IFA vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Highlights d Activation of the mitochondrial ClpP induces p53independent cancer cell lethality d Imipridones are allosteric agonists of ClpP, being tested in human clinical trials d ClpP activation increases proteolysis of mitochondrial proteins d ClpP-mediated mitochondrial proteolysis impairs mitochondrial respiratory function
Background Endogenous or iatrogenic antitumor immune responses can improve the course of follicular lymphoma (FL), but may be diminished by immune checkpoints in the tumor microenvironment. These may include effects of programmed death (PD)-1, a co-inhibitory receptor that impairs T-cell function and is highly expressed on intratumoral T cells. In a Phase II trial, we determined the activity of pidilizumab, a humanized anti-PD-1 monoclonal antibody, with rituximab in patients with relapsed FL. Methods FL patients with rituximab-sensitive disease relapsing after 1–4 prior therapies were eligible. Pidilizumab was administered at 3 mg/kg every 4 weeks for 4 infusions, plus 8 optional infusions every 4 weeks for patients with stable disease or better. Starting 2 weeks after the first infusion of pidilizumab, rituximab was given at 375 mg/m2 weekly for 4 weeks. The primary endpoint was to assess the overall response rate. Analysis was by intention to treat. Peripheral blood and tumor biopsies were studied to assess immunological effects of pidilizumab. This trial has been completed and was registered at www.clinicaltrials.gov as NCT00904722. Findings The combination was well-tolerated, with no autoimmune or therapy-related grade 3/4 toxicities. The most common grade 1 adverse events were anemia (14 patients) and fatigue (13 patients), and the most common grade 2 adverse event was respiratory infection (5 patients). Overall 19/29 (66%) and complete 15/29 (52%) response rates in 29 evaluable patients were high, with tumor regression in 25/29 (86%) of patients. Median progression-free survival was 18.8 months (95% CI: 14.7 months to not reached). The median response duration for the 19 responders was 20.2 months (95% CI: 13.9 months to not reached). Correlative studies of blood and tumor provided insights into predicting response and understanding mechanisms involved. Interpretation Pidilizumab with rituximab is well-tolerated and its activity compared favorably to historical retreatment with rituximab monotherapy in patients with relapsed FL. Our results establish that immune checkpoint blockade is worthy of further study in FL. Funding National Institutes of Health, Leukemia and Lymphoma Society, Cure Tech Ltd, and UT MD Anderson Cancer Center.
SUMMARY This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.