Summary The scavenging of extracellular macromolecules by engulfment can sustain cell growth in a nutrient-depleted environment. Engulfed macromolecules are contained within vacuoles that are targeted for lysosome fusion to initiate degradation and nutrient export. We have shown that vacuoles containing engulfed material undergo mTORC1-dependent fission that redistributes degraded cargo back into the endosomal network. Here we identify the lipid kinase PIKfyve as a regulator of an alternative pathway that distributes engulfed contents in support of intracellular macromolecular synthesis during macropinocytosis, entosis, and phagocytosis. We find that PIKfyve regulates vacuole size in part through its downstream effector the cationic transporter TRPML1. Furthermore, PIKfyve promotes recovery of nutrients from vacuoles, suggesting a potential link between PIKfyve activity and lysosomal nutrient export. During nutrient depletion, PIKfyve activity protects Ras-mutant cells from starvation-induced cell death and supports their proliferation. These data identify PIKfyve as a critical regulator of vacuole maturation and nutrient recovery during engulfment.
Cocaine is a suspected cofactor in human immunodeficiency virus (HIV)-associated dementia but cocaine's effects are not clear. Herein the authors describe investigations of the mechanisms by which cocaine increases HIV-1 invasion through brain microvascular endothelial cells (BMVECs). Cocaine binds to a site on BMVECs, which is not a biogenic amine transporter, a binding site for estrogen, or a muscarinic receptor and for which benztropine and tamoxifen have the highest affinity. Cocaine treatment of BMVECs disrupts intercellular junctions and induces cell ruffling, which could account for their increased permeability and decreased electrical resistance. HIV-1 enters BMVECs by macropinocytosis and is transported to lysosomes and inactivated. In cocaine-treated BMVECs, the virus enters and persists in large cytoplasmic "lakes." Cocaine exposure of BMVECs up-regulates transcription of genes important in cytoskeleton organization, signal transduction, cell swelling, vesicular trafficking, and cell adhesion. The toxicity of cocaine for the blood-brain barrier may lead to increased virus neuroinvasion and neurovascular complications of cocaine abuse.
• Genetically accurate xenografts of CMML are achievable with near 100% frequency in NSGS mice.• Robust human engraftment and overt phenotypes of CMML and JMML xenografts here facilitate preclinical therapeutic evaluation in vivo.Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rg null background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34 1 cells (n 5 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n 5 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n 5 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34 1 cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34 1 cells as harboring the disease-initiating compartment in vivo.Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n 5 4 patients, n 5 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders. (Blood. 2017;130(4):397-407)
We examined heart tissues of AIDS patients with or without HIV cardiomyopathy (HIVCM) by immunohistochemistry, in situ polymerase chain reaction, in situ riboprobe hybridization, and the TUNEL technique for apoptosis. In HIVCM tissues, only inflammatory cells, but not endothelial cells or cardiomyocytes, displayed HIV-1 DNA and RNA. However, macrophages, lymphocytes, and--in a patchy fashion--cardiomyocytes and endothelial cells exhibited virus envelope protein gp120. Macrophages infiltrated the myocardium in a perivascular fashion and expressed tumor necrosis factor family ligands; adjacent cardiomyocytes suffered apoptosis. In vitro HIV-1 strongly invaded neonatal rat ventricular myocytes (NRVMs) and coronary artery endothelial cells (CAECs) and induced microvilli but did not replicate. HIV-1, gp120, or Tat induced Erk 1/2 phosphorylation, activation of caspase-3, and apoptosis of NRVMs and CAECs; all of these were inhibited by a MAPK/ERK-kinase (MEK) inhibitor U0126. The pathogenesis of HIVCM involves HIV-1 replication in inflammatory cells and induction of cardiomyocyte apoptosis by (1) the extrinsic pathway through apoptotic ligands and (2) the intrinsic pathway through direct virus entry and gp120- and Tat-proapoptotic signaling.
HIV-1 infection is associated with serious cardiovascular complications, but the roles of HIV-1, viral proteins, and highly active antiretroviral therapy (HAART) drugs are not understood. HAART decreases the overall risk of heart disease but leads to metabolic disturbances and possibly coronary artery disease. We investigated toxicities of HIV-1, HIV-1 glycoprotein 120 (gp120), and HAART drugs for human coronary artery endothelial cells (CAECs), brain microvascular endothelial cells, and neonatal rat ventricular myocytes (NRVMs). HIV-1 and gp120, but not azidothymidine (AZT), induced apoptosis of NRVMs and CAECs. Ethylisothiourea, an inhibitor of nitric oxide synthase, inhibited apoptosis induction by gp120. AZT, HIV-1, and gp120 all damaged mitochondria of cardiomyocytes. HAART drugs, AZT, and indinavir, but not HIV-1, produced intercellular gaps between confluent endothelial cells and decreased transendothelial electrical resistance. In conclusion, HIV-1 and gp120 induce toxicity through induction of cardiomyocyte and endothelial cell apoptosis. HAART drugs disrupt endothelial cell junctions and mitochondria and could cause vascular damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.