The microRNAs miR-1 and miR-133 are preferentially expressed in cardiac and skeletal muscles and have been shown to regulate differentiation and proliferation of these cells. We report here a novel aspect of cellular function of miR-1 and miR-133 regulation of cardiomyocyte apoptosis. miR-1 and miR-133 produced opposing effects on apoptosis, induced by oxidative stress in H9c2 rat ventricular cells, with miR-1 being pro-apoptotic and miR-133 being anti-apoptotic. miR-1 level was significantly increased in response to oxidative stress. We identified single target sites for miR-1 only, in the 3′-untranslated regions of the HSP60 and HSP70 genes, and multiple putative target sites for miR-133 throughout the sequence of the caspase-9 gene. miR-1 reduced the levels of HSP60 and HSP70 proteins without changing their transcript levels, whereas miR-133 did not affect HSP60 and HSP70 expression at all. By contrast, miR-133 repressed caspase-9 expression at both the protein and mRNA levels. The post-transcriptional repression of HSP60 and HSP70 and caspase-9 was further confirmed by luciferase reporter experiments. Our results indicate that miR-1 and miR-133 are involved in regulating cell fate with increased miR-1 and/or decreased miR-133 levels favoring apoptosis and decreased miR-1 and/or miR-133 levels favoring survival. Post-transcriptional repression of HSP60 and HSP70 by miR-1 and of caspase-9 by miR-133 contributes significantly to their opposing actions.
A long non-coding RNA (lncRNA), named myocardial infarction associated transcript (MIAT), has been documented to confer risk of myocardial infarction (MI). The aim of this study is to elucidate the pathophysiological role of MIAT in regulation of cardiac fibrosis. In a mouse model of MI, we found that MIAT was remarkably up-regulated, which was accompanied by cardiac interstitial fibrosis. MIAT up-regulation in MI was accompanied by deregulation of some fibrosis-related regulators: down-regulation of miR-24 and up-regulation of Furin and TGF-β1. Most notably, knockdown of endogenous MIAT by its siRNA reduced cardiac fibrosis and improved cardiac function and restored the deregulated expression of the fibrosis-related regulators. In cardiac fibroblasts treated with serum or angiotensin II, similar up-regulation of MIAT and down-regulation of miR-24 were consistently observed. These changes promoted fibroblasts proliferation and collagen accumulation, whereas knockdown of MIAT by siRNA or overexpression of miR-24 with its mimic abrogated the fibrogenesis. Our study therefore has identified MIAT as the first pro-fibrotic lncRNA in heart and unraveled the role of MIAT in the pathogenesis of MI. These findings also promise that normalization of MIAT level may prove to be a therapeutic option for the treatment of MI-induced cardiac fibrosis and the associated cardiac dysfunction.
Background and purpose: Tanshinone IIA is an active component of a traditional Chinese medicine based on Salvia miltiorrhiza, which reduces sudden cardiac death by suppressing ischaemic arrhythmias. However, the mechanisms underlying the anti-arrhythmic effects remain unclear. Experimental approach: A model of myocardial infarction (MI) in rats by ligating the left anterior descending coronary artery was used. Tanshinone IIA or quinidine was given daily, before (7 days) and after (3 months) MI; cardiac electrical activity was monitored by ECG recording. Whole-cell patch-clamp techniques were used to measure the inward rectifying K + current (IK1) in rat isolated ventricular myocytes. Kir2.1 and serum response factor (SRF) levels were analysed by Western blot and microRNA-1 (miR-1) level was determined by real-time RT-PCR. Key results: Tanshinone IIA decreased the incidence of arrhythmias induced by acute cardiac ischaemia and mortality in rats 3 months after MI. Tanshinone IIA restored the diminished IK1 current density and Kir2.1 protein after MI in rat ventricular myocytes, while quinidine further inhibited IK1/Kir2.1. MiR-1 was up-regulated in MI, possibly due to the concomitant increase in SRF, a transcriptional activator of the miR-1 gene, accounting for decreased Kir2.1. Treatment with tanshinone IIA prevented increased SRF and hence increased miR-1 post-MI, whereas quinidine did not. Conclusions and implications: Down-regulation of miR-1 and consequent recovery of Kir2.1 may account partially for the efficacy of tanshinone IIA in suppressing ischaemic arrhythmias and cardiac mortality. These finding support the proposal that miR-1 could be a potential therapeutic target for the prevention of ischaemic arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.