Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons ( r > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average ∼1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, ∼0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 ± 18% for water-soluble BrC and 76 ± 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality.
The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013−2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-insoluble BrC (WI-BrC) fraction dominates the total BrC absorption at 365 nm in both Xi'an (51 ± 5%) and Beijing (62 ± 13%), followed by a humic-like fraction (HULIS-BrC) and high-polarity water-soluble BrC. The major chromophores identified in HULIS-BrC are nitrophenols and carbonyl oxygenated polycyclic aromatic hydrocarbons (OPAHs) with 2−3 aromatic rings (in total 18 species), accounting for 10% and 14% of the light absorption of HULIS-BrC at 365 nm in Xi'an and Beijing, respectively. In comparison, the major chromophores identified in WI-BrC are PAHs and OPAHs with 4−6 aromatic rings (in total 16 species), contributing 6% and 8% of the light absorption of WI-BrC at 365 nm in Xi'an and Beijing, respectively.
Black carbon (BC) is important for climate forcing, and its effects on the Earth's radiative balance remain a major uncertainty in climate models. In this study, we investigated the mixing state of refractory black carbon (rBC) and aerosol optical properties in a polluted atmosphere at Xi'an, western China. The average rBC mass concentration was 9.9 mg m ¡3 during polluted periods, 7.6 times higher than that in clean periods. About 48.6% of the rBC was internally-mixed or coated with nonrefractory materials during polluted periods; this was 27% higher than in clean periods. Correlation analysis between the number fraction of thickly-coated rBC particles (f BC ) and the major particulate species indicate that organics may be the primary contributor to rBC coatings during polluted periods. The average mass absorption cross section of rBC (MAC BC ) particles at l D 870 nm was 7.6 § 0.02 m 2 g ¡1 for the entire campaign. The MAC BC showed a positive correlation with f BC , and the enhancement of MAC BC due to internal mixing was 1.8 times. These observations suggest that an enhancement of BC absorption by a factor of 2 could be appropriate for climate models associated with high PM 2.5 levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.