Understanding future changes in global terrestrial near-surface wind speed (NSWS) in specific global warming level (GWL) is crucial for climate change adaption. Previous studies have projected the NSWS changes; however, the changes of NSWS with different GWLs have yet to be studied. In this paper, we employ the Max Planck Institute Earth System Model large ensembles to evaluate the contributions of different GWLs to the NSWS changes. The results show that the NSWS decreases over the Northern Hemisphere (NH) mid-to-high latitudes and increases over the Southern Hemisphere (SH) as the GWL increases by 1.5 °C–4.0 °C relative to the preindustrial period, and that these characteristics are more significant with the stronger GWL. The probability density of the NSWS shifts toward weak winds over NH and strong winds over SH between the current climate and the 4.0 °C GWL. Compared to 1.5 °C GWL, the NSWS decreases −0.066 m s−1 over NH and increases +0.065 m s−1 over SH with 4.0 °C GWL, especially for East Asia and South America, the decrease and increase are most significant, which reach −0.21 and +0.093 m s−1, respectively. Changes in the temperature gradient induced by global warming could be the primary factor causing the interhemispheric asymmetry of future NSWS changes. Intensified global warming induces the reduction in Hadley, Ferrell, and Polar cells over NH and the strengthening of the Hadley cell over SH could be another determinant of asymmetry changes in NSWS between two hemispheres.
A recovery of near-surface wind speed (SWS) in the last decade has been reported over China; nevertheless, the contributions of large-scale ocean-atmosphere circulations (LOACs) to the SWS changes are rarely investigated. In this study, the turning point (TP) of the terrestrial stilling was validated over eastern China for 1979–2017. Furthermore, a forward stepwise regression algorithm was used to assess the contribution of LOACs to SWS changes. The results revealed that the TP of the SWS reversal occurred in approximately 2011 during the study period. Mean annual and seasonal SWSs exhibited decreases before the TP, with the largest decrease in spring (–0.134 ± 0.014 m s−1 decade−1), while SWSs increased after the TP, most strongly in autumn (0.377 ± 0.053 m s−1 decade−1). The SWS decrease before the TP and increase after the TP were caused by the decreasing and increasing frequencies of strong windy days (>75th percentile of SWS), respectively. The effects of LOACs on the long-term changes of SWS were pronounced. The contributions of LOACs to the decreasing and increasing trends of SWSs were >60.0%, with the exception of autumn. The projected SWSs exhibited increases in the near-term (2021–2040) for the low-emission scenarios (e.g. Shared Socioeconomic Pathway 245). For the mid-term and long-term projections, the SWSs still displayed a downward trend, which was mainly attributed to the reduction of strong windy days. Consequently, the present SWS recovery in the recent decade may be only expected to last for a short amount of time before winds start decreasing again.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.