Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein ( HILPDA ). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.
Ferroptosis, an iron-dependent, non-apoptotic cell death program, is involved in various degenerative diseases and represents a targetable vulnerability in certain cancers 1 . The ferroptosissusceptible cell state can either preexist in cells arising from certain lineages or be acquired during cell-state transitions 2-5 . Precisely how ferroptosis susceptibility is dynamically regulated remains poorly understood. Using genome-wide CRISPR/Cas9 suppressor screens, we identify the peroxisome organelle as a critical contributor to ferroptosis sensitivity in human renal and ovarian carcinoma cells. By lipidomic profiling, we show that peroxisomes contribute to ferroptosis through the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), an understudied lipid *
Platinum (Pt)-based catalysts have been unanimously considered the most efficient catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Unfortunately, the exorbitant cost of Pt hampers the widespread adoption and development of PEMFCs. Scientists have devoted tremendous efforts to achieving higher catalytic activity with less Pt usage by constructing delicate nanostructures. Substituting Pt with cheaper metals may be a feasible solution but suffers from a relatively low intrinsic activity. Recently, single-atom catalysts (SACs), which possess the highest metal utilization and excellent activity because of the minimum size of metal and unique coordination structure, are developing rapidly and have been regarded as a potential alternative to Pt-based materials. Here, we review the development of conventional Ptand nonprecious-metal-based ORR catalysts and summarize recent achievement in SACs for the ORR. A brief perspective on the remaining challenges and future directions of SACs is also presented.
Ferroptosis is widely involved in degenerative diseases in various tissues including kidney, liver and brain, and is a targetable vulnerability in clear-cell carcinomas and therapy-resistant cancers. Accumulation of phospholipid hydroperoxides in cellular membranes is recognized as the hallmark and rate-limiting step of ferroptosis; however, the enzymes contributing to lipid peroxidation remain poorly characterized. Using genome-wide, CRISPR/Cas9-mediated suppressor screens, we identify cytochrome P450 oxidoreductase (POR) as a contributor to ferroptotic cell death in cancer cells exhibiting inherent and induced susceptibility to ferroptosis. By genetic depletion of POR in cancer cells, we reveal that POR contributes to ferroptosis across a wide range of lineages and cell-states, and in response to distinct mechanisms of ferroptosis induction. Using systematic lipidomic profiling, we further map POR's activity to the lipid peroxidation step in ferroptosis. Hence, our work suggests POR as a key mediator of ferroptosis and a potential druggable target for developing anti-ferroptosis therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.