The fourth industrial revolution, also referred to as Industrie 4.0, has triggered a number of research projects to improve communication systems for industrial environments. Wireless technologies for mission-critical machine-to-machine communication are expected to enable very efficient and highly flexible production processes. It is especially challenging for wireless interfaces to fulfill the required end-to-end latency and the reliability constraints of the automation industry. In order to design novel PHY and MAC schemes for ultra low delay, ultra reliable and deterministic transmission of data, e.g., through optimized pulse shaping, we study the indoor radio propagation in a representative factory automation cell where industrial robots are to be controlled. We performed channel measurements using a broadband channel sounder at 5.85 GHz carrier frequency. During the measurements, the robots were in motion and executed a typical pick-and-place process. From the recorded data we evaluate the channel characteristics and calculate relevant delay statistics. We distinguish two measurement series that differ in the scattering environment and present the derived parameters. Finally, we discuss the impact of our results on the design of new 5G waveforms for industrial radio systems
In vitro tissue engineering of vascular grafts requires dynamic conditioning in a bioreactor system for in vitro tissue maturation and remodeling to receive a mechanically adequate and hemocompatible implant. The goal of the current work was to develop a bioreactor system for the conditioning of vascular grafts which is (i) able to create a wide range of flow, pressure and frequency conditions, including physiological ones; (ii) compact and easy to assemble; (iii) transportable; (iv) disposable. The system is driven by a small centrifugal pump controlled via a custom-made control unit, which can also be operated on batteries to allow for autonomous transportation. To show the potential of the newly developed bioreactor system small-caliber vascular composite grafts (n = 5, internal diameter = 3 mm, length = 12.5 cm) were fabricated using a fibrin scaffold embedding human umbilical artery smooth muscle cells and a polyvinylidene fluoride warp-knitted macroporous mesh. Subsequently, the vascular grafts were endothelialized and mounted in the bioreactor system for conditioning. The conditioning parameters remained within the predefined range over the complete conditioning period and during operation on batteries as tested for up to 25 h. Fabrication and pre-conditioning under arterial pressure and shear stress conditions resulted in robust and hemocompatible tissue-engineered vascular grafts. Analysis of immunohistochemical stainings against extracellular matrix and cell-specific proteins revealed collagen I and collagen III deposition. The luminal surface was confluently covered with endothelial cells. The developed bioreactor system showed cytocompatibility and pH, pO, pCO, glucose and lactate stayed constant. Sterility was maintained during the complete fabrication process of the vascular grafts. The potential of a versatile and mobile system and its functionality by conditioning tissue-engineered vascular grafts under physiological pressure and flow conditions could be demonstrated.
Factory automation and production are currently undergoing massive changes, and 5G is considered being a key enabler. In this paper, we state uses cases for using 5G in the factory of the future, which are motivated by actual needs of the industry partners of the "5Gang" consortium. Based on these use cases and the ones by 3GPP, a 5G system architecture for the factory of the future is proposed. It is set in relation to existing architectural frameworks.
In this paper, we propose a communication network architecture for industrial applications that combines new 5G technologies with other existing communication technologies on the shop floor. This architecture connects private and public mobile networks with local networking technologies to achieve a flexible setup addressing many different industrial use cases. We show how the advancements introduced around the new 5G mobile technology can address a wide range of industrial requirements. We further describe relevant use cases and develop an overall communication system architecture proposal, which is able to fulfill not only technical requirements but also system requirements, which result from specific applications existing in today’s and future manufacturing scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.