Background: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25e26% of discordance for classifying a benign nevus versus malignant melanoma. A recent study indicated the potential of deep learning to lower these discordances. However, the performance of deep learning in classifying histopathologic melanoma images was never compared directly to human experts. The aim of this study is to perform such a first direct comparison. Methods: A total of 695 lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi/345 melanoma). Only the haematoxylin & eosin (H&E) slides
Background: Recent studies have demonstrated the use of convolutional neural networks (CNNs) to classify images of melanoma with accuracies comparable to those achieved by board-certified dermatologists. However, the performance of a CNN exclusively trained with dermoscopic images in a clinical image classification task in direct competition with a large number of dermatologists has not been measured to date. This study compares the performance of a convolutional neuronal network trained with dermoscopic images exclusively for identifying melanoma in clinical photographs with the manual grading of the same images by dermatologists.
Background: Artificial intelligence (AI) has shown promise in numerous experimental studies, particularly in skin cancer diagnostics. Translation of these findings into the clinic is the logical next step. This translation can only be successful if patients' concerns and questions are addressed suitably. We therefore conducted a survey to evaluate the patients' view of artificial intelligence in melanoma diagnostics in Germany, with a particular focus on patients with a history of melanoma. Participants and Methods: A web-based questionnaire was designed using LimeSurvey, sent by e-mail to university hospitals and melanoma support groups and advertised on social media. The anonymous questionnaire evaluated patients' expectations and concerns toward artificial intelligence in general as well as their attitudes toward different application scenarios. Descriptive analysis was performed with expression of categorical variables as percentages and 95% confidence intervals. Statistical tests were performed to investigate associations between sociodemographic data and selected items of the questionnaire. Results: 298 individuals (154 with a melanoma diagnosis, 143 without) responded to the questionnaire. About 94% [95% CI = 0.91-0.97] of respondents supported the use of artificial intelligence in medical approaches. 88% [95% CI = 0.85-0.92] would even make their own health data anonymously available for the further development of AI-based applications in medicine. Only 41% [95% CI = 0.35-0.46] of respondents were amenable to the use of artificial intelligence as stand-alone system, 94% [95% CI = 0.92-0.97] to its use as assistance system for physicians. In subgroup analyses, only minor differences were detectable. Respondents with a previous history of melanoma were more amenable to the use of AI applications for early detection even at home. They would prefer an application scenario where physician and AI classify the lesions independently. With respect to AI-based applications in medicine, patients were concerned about insufficient Jutzi et al. Patients' View on AI-Based Diagnosis data protection, impersonality and susceptibility to errors, but expected faster, more precise and unbiased diagnostics, less diagnostic errors and support for physicians. Conclusions: The vast majority of participants exhibited a positive attitude toward the use of artificial intelligence in melanoma diagnostics, especially as an assistance system.
Background: Multiple studies have compared the performance of artificial intelligence (AI)ebased models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice.
Background: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification. Methods: Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.