Ototoxicity of styrene and the synergistic action of styrene and noise have been shown in rats. The respective data in humans are scarce and equivocal. This study evaluated the effects of occupational exposure to styrene and combined exposures to styrene and noise on hearing. The study group, comprised of 290-yacht yard and plastic factory workers, was exposed to a mixture of organic solvents, having styrene as its main compound. The reference group, totaling 223 subjects, included (1) white-collar workers, exposed neither to solvents nor noise and (2) metal factory workers, exposed exclusively to noise. All subjects were assessed by means of a detailed questionnaire and underwent otorhinolaryngological and audiometric examinations. Multiple logistic regression analysis revealed almost a 4-fold (or 3.9; 95% CI = 2.4-6.2) increase in the odds of developing hearing loss related to styrene exposure. The factors adjusted for were: age, gender, current occupational exposure to noise, and exposure to noise in the past. In cases of the combined exposures to styrene and noise, the odds ratios were two to three times higher than the respective values for styrene-only and noise-only exposed subjects. The mean hearing thresholds--adjusted for age, gender, and exposure to noise--were significantly higher in the solvent-exposed group than in the unexposed reference group at all frequencies tested. A positive linear relationship existed between an averaged working life exposure to styrene concentration and a hearing threshold at the frequencies of 6 and 8 kHz. This study provides the epidemiological evidence that occupational exposure to styrene is related to an increased risk of hearing loss. Combined exposures to noise and styrene seem to be more ototoxic than exposure to noise alone.
Questionnaire and audiometric data of 701 dockyard workers (517 noise and organic solvent mixture-exposed and 184 noise-only-exposed) were referred to 205 control subjects not exposed to either noise or solvents. The odds ratio (OR) of hearing loss was significantly increased by approximately 3 times in the noise-only group and by almost 5 times in the noise and solvent group. A moderate effect of solvent ototoxicity, in addition to noise, was observed on hearing threshold at a frequency 8 kHz. ORs for hearing loss were 1.12 for each increment of 1 year of age, 1.07 for every decibel of lifetime noise exposure (dB-A), and 1.004 for each increment of the index of lifetime exposure to solvents. The results suggest an additive damaging effect of coexposure to noise and organic solvents to the auditory organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.