Hereditary Persistence of Fetal Hemoglobin (HPFH) is characterized by
persistent high levels of fetal hemoglobin (HbF) in adults. Several contributory
factors, both genetic and environmental, have been identified 1, but others remain elusive. Ten of twenty-seven
members from a Maltese family presented with HPFH. A genome-wide SNP scan
followed by linkage analysis revealed a candidate region on chromosome
19p13.12–13. Sequencing identified a nonsense mutation in the
KLF1 gene, p.K288X, ablating the DNA binding domain of this
key erythroid transcriptional regulator 2.
Only HPFH family members were heterozygote carriers of this mutation. Expression
profiling on primary erythroid progenitors revealed down-regulation of KLF1
target genes in HPFH samples. Functional assays demonstrated that, in addition
to its established role in adult globin expression, KLF1 is a critical activator
of the BCL11A gene, encoding a suppressor of HbF expression
3. These observations provide a
rationale for the effects of KLF1 haploinsufficiency on HbF
levels.
The biosynthesis of Hb F in place of the deficient Hb A could be a suitable treatment for beta hemoglobinopathies. Among newborn Hb F-Malta-I heterozygotes, it could be shown that the XmnI sequence alone had little, if any effect on gamma-globin gene expression, but interplay with the (AT)(X)T(Y) sites in cis and in trans may occur. In contrast, while the XmnI sequence is clearly correlated with gamma-globin levels in anemic adult beta-thalassemia (thal) homozygotes, the effect on F-erythrocyte numbers and Hb F/F-erythrocyte appears independent of the (AT)(X)T(Y) sites. Even at levels of hydroxyurea (HU) as low as 1.65 mg/kg/day (vs. 10 mg/kg/day on the high dose regime) it can be shown that although even a small increase of Hb F could be obtained, the effect was rarely translated into an increase in circulating hemoglobin (Hb). In most cases, the elevated Hb F level was dependent on the XmnI sequence and was due to increased numbers of F-erythrocytes or Hb F/F-erythrocyte or both. It seems that the bone marrow of thalassemia homozygotes may be more sensitive to myelosuppression by HU possibly due to medullary inflammation. While the data are consistent with loop models of globin switching mechanisms, there is urgent need for large, hypothesis driven, multicenter trials of molecules that could maintain or re-induce high Hb F levels in beta-thal and subject to genetic and epigenetic constraints including inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.