Wine grape quality and quantity are affected by vine growing conditions during critical phenological stages. Field observations of vine growth stages are too sparse to fully capture the spatial variability of vine conditions. In addition, traditional grape yield prediction methods are time consuming and require large amount grape samples. Remote sensing data provide detailed spatial and temporal information regarding vine development that is useful for vineyard management. In this study, Landsat surface reflectance products from 2013 and 2014 were used to map satellite-based Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) over two Vitis vinifera L. cv. Pinot Noir vineyards in California, USA. The spatial correlation between grape yield maps and the interpolated daily time series (LAI and NDVI) was quantified. NDVI and LAI were found to have similar performance as a predictor of spatial yield variability, providing peak correlations of 0.8 at specific times during the growing season, and the timing of this peak correlation differed for the two years of study. In addition, correlations with maximum and seasonal-cumulative vegetation indices were also evaluated, and showed slightly lower correlations with the observed yield maps. Finally, the within-season grape yield predictability was examined using a simple strategy in which the relationship between grape yield and vegetation indices were calibrated with limited ground measurements. This strategy has a strong potential to improve the accuracy and efficiency of yield estimation in comparison with traditional approaches used in the wine grape growing industry.
Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.
The thermal-based Two Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand part of this research was conducted thanks to the MC-COFUND Talentia Program
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.