A review of the development and implementation of a 4-year medical student integrated ultrasound curriculum is presented. Multiple teaching and assessment modalities are discussed as well as results from testing and student surveys. Lessons learned while establishing the curriculum are summarized. It is concluded that ultrasound is a well received, valuable teaching tool across all 4 years of medical school, and students learn ultrasound well, and they feel their ultrasound experience enhances their medical education.
Interest in ultrasound education in medical schools has increased dramatically in recent years as reflected in a marked increase in publications on the topic and growing attendance at international meetings on ultrasound education. In 2006, the University of South Carolina School of Medicine introduced an integrated ultrasound curriculum (iUSC) across all years of medical school. That curriculum has evolved significantly over the 9 years. A review of the curriculum is presented, including curricular content, methods of delivery of the content, student assessment, and program assessment. Lessons learned in implementing and expanding an integrated ultrasound curriculum are also presented as are thoughts on future directions of undergraduate ultrasound education. Ultrasound has proven to be a valuable active learning tool that can serve as a platform for integrating the medical student curriculum across many disciplines and clinical settings. It is also well-suited for a competency-based model of medical education. Students learn ultrasound well and have embraced it as an important component of their education and future practice of medicine. An international consensus conference on ultrasound education is recommended to help define the essential elements of ultrasound education globally to ensure ultrasound is taught and ultimately practiced to its full potential. Ultrasound has the potential to fundamentally change how we teach and practice medicine to the benefit of learners and patients across the globe.Electronic supplementary materialThe online version of this article (doi:10.1186/s13089-015-0035-3) contains supplementary material, which is available to authorized users.
Sepsis is a major cause of death worldwide. It triggers systemic inflammation, the role of which remains unclear. In the current study, we investigated the induction of microRNA (miRNA) during sepsis and their role in the regulation of inflammation. Patients, on days 1 and 5 following sepsis diagnosis, had reduced T cells but elevated monocytes. Plasma levels of IL-6, IL-8, IL-10 and MCP-1 dramatically increased in sepsis patients on day 1. T cells from sepsis patients differentiated primarily into Th2 cells, whereas regulatory T cells decreased. Analysis of 1163 miRNAs from PBMCs revealed that miR-182, miR-143, miR-145, miR-146a, miR-150, and miR-155 were dysregulated in sepsis patients. miR-146a downregulation correlated with increased IL-6 expression and monocyte proliferation. Bioinformatics analysis uncovered the immunological associations of dysregulated miRNAs with clinical disease. The current study demonstrates that miRNA dysregulation correlates with clinical manifestations and inflammation, and therefore remains a potential therapeutic target against sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.