Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo.
The role of the thymus in HIV-1 pathogenesis remains unclear. We developed an assay to quantify the number of recent thymic emigrants in blood based on the detection of a major excisional DNA byproduct (termed α1 circle) of T cell receptor rearrangement. By studying 532 normal individuals, we found that α1 circle numbers in blood remain high for the first 10–15 yr of life, a sharp drop is seen in the late teen years, and a gradual decline occurs thereafter. Compared with age-matched uninfected control individuals, α1 circle numbers in HIV-1–infected adults were significantly reduced; however, there were many individuals with normal α1 circle numbers. In 74 individuals receiving highly active antiretroviral therapy, we found no appreciable effect on α1 circle numbers in those whose baseline values were already within the normal range, but significant increases were observed in those with a preexisting impairment. The increases in α1 circle numbers were, however, numerically insufficient to account for the rise in levels of naive T lymphocytes. Overall, it is difficult to invoke thymic regenerative failure as a generalized mechanism for CD4 lymphocyte depletion in HIV-1 infection, as α1 circle numbers are normal in a substantial subset of HIV-1–infected individuals.
Background
Identification of the Th17 T cell subset as important mediators of host defense and pathology, prompted us to determine their susceptibility to HIV infection.
Methods and Results
We found that a sizeable portion of Th17 cells express HIV co-receptor CCR5 and produce very low levels of CCR5 ligands MIP-1α and MIP-1β. Accordingly, CCR5+ Th17 cells were efficiently infected with CCR5-tropic HIV and were depleted during viral replication in vitro. Remarkably, HIV+ individuals under treatment showed significantly reduced Th17 cells compared to HIV− subjects, regardless of their viral loads or CD4 numbers, whereas treatment naïve subjects had normal levels. However, there was a preferential reduction in CCR5+ T cells that were also CCR6+, which is expressed on all Th17 cells, as compared to CCR6−CCR5+ cells, in both treated and untreated HIV+ subjects. This observation suggests preferential targeting of CCR6+CCR5+ Th17 cells by CCR5-tropic viruses in vivo. Th17 cell levels also inversely correlated with activated CD4+ T cells in HIV+ individuals under treatment.
Conclusion
Our findings suggest a complex perturbation of Th17 subsets during the course of HIV-disease potentially through both direct viral infection and virus indirect mechanisms such as immune activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.