Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P 6 ) typically represents approximately 75% to 80% of maize (Zea mays) seed total P. Here we describe the origin, inheritance, and seed phenotype of two non-lethal maize low phytic acid mutants, lpa1-1 and lpa2-1. The loci map to two sites on chromosome 1S. Seed phytic acid P is reduced in these mutants by 50% to 66% but seed total P is unaltered. The decrease in phytic acid P in mature lpa1-1 seeds is accompanied by a corresponding increase in inorganic phosphate (P i ). In mature lpa2-1 seed it is accompanied by increases in P i and at least three other myo-inositol (Ins) phosphates (and/or their respective enantiomers): d-Ins(1,2,4,5,6) P 5 ; d-Ins (1,4,5,6) P 4 ; and d-Ins(1,2,6) P 3 . In both cases the sum of seed P i and Ins phosphates (including phytic acid) is constant and similar to that observed in normal seeds. In both mutants P chemistry appears to be perturbed throughout seed development. Homozygosity for either mutant results in a seed dry weight loss, ranging from 4% to 23%. These results indicate that phytic acid metabolism during seed development is not solely responsible for P homeostasis and indicate that the phytic acid concentration typical of a normal maize seed is not essential to seed function.
Pairing, synapsis, and recombination are prerequisites for accurate chromosome segregation in meiosis. The phs1 gene in maize is required for pairing to occur between homologous chromosomes. In the phs1 mutant, homologous chromosome synapsis is completely replaced by synapsis between nonhomologous partners. The phs1 gene is also required for installation of the meiotic recombination machinery on chromosomes, as the mutant almost completely lacks chromosomal foci of the recombination protein RAD51. Thus, in the phs1 mutant, synapsis is uncoupled from recombination and pairing. The protein encoded by the phs1 gene likely acts in a multistep process to coordinate pairing, recombination, and synapsis.
Molecular mechanisms that initiate meiosis have been studied in fungi and mammals, but little is known about the mechanisms directing the meiosis transition in other organisms. To elucidate meiosis initiation in plants, we characterized and cloned the ameiotic1 (am1) gene, which affects the transition to meiosis and progression through the early stages of meiotic prophase in maize. We demonstrate that all meiotic processes require am1, including expression of meiosis-specific genes, establishment of the meiotic chromosome structure, meiosis-specific telomere behavior, meiotic recombination, pairing, synapsis, and installation of the meiosis-specific cytoskeleton. As a result, in most am1 mutants premeiotic cells enter mitosis instead of meiosis. Unlike the genes involved in initiating meiosis in yeast and mouse, am1 also has a second downstream function, whereby it regulates the transition through a novel leptotene-zygotene checkpoint, a key step in early meiotic prophase. The am1 gene encodes a plant-specific protein with an unknown biochemical function. The AM1 protein is diffuse in the nucleus during the initiation of meiosis and then binds to chromatin in early meiotic prophase I when it regulates the leptotene-zygotene progression.chromosomes ͉ plant development ͉ genetics ͉ recombination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.