Acute lung injury (ALI) leading to respiratory distress is a common sequela of shock/trauma, however, modeling this process in mice with a single shock or septic event is inconsistent. One explanation is that hemorrhage is often just a "priming insult," thus, secondary stimuli may be required to "trigger" ALI. To test this we carried out studies in which we assessed the capacity of hemorrhage alone or hemorrhage followed by septic challenge (CLP) to induce ALI. Lung edema, bronchoalveolar lavage interleukin (IL)-6, alveolar congestion, as well as lung IL-6, macrophage inflammatory protein (MIP)-2, and myeloperoxidase (MPO) activity were all increased in mice subjected to CLP at 24 but not 72 hours following hemorrhage. This was associated with a marked increase in the susceptibility of these mice to septic mortality. Peripheral blood neutrophils derived from 24 hours post-hemorrhage, but not Sham animals, exhibited an ex vivo decrease in apoptotic frequency and an increase in respiratory burst capacity, consistent with in vivo "priming." Subsequently, we observed that adoptive transfer of neutrophils from hemorrhaged but not sham-hemorrhage animals to neutropenic recipients reproduce ALI when subsequently septically challenged, implying that this priming was mediated by neutrophils. We also found marked general increases in lung IL-6, MIP-2, and MPO in mice deficient for toll-like receptor (TLR-4) or the combined lack of TLR-4/FasL. However, the TLR-4 defect markedly attenuated neutrophil influx into the lung while not altering the change in local cytokine/chemokine expression. Alternatively, the combined loss of FasL and TLR-4 did not inhibit the increase in MPO and exacerbated lung IL-6/MIP-2 levels even further.
Apoptosis and inflammation play an important role in the pathogenesis of direct/pulmonary acute lung injury (ALI). However, the role of the Fas receptor-driven apoptotic pathway in indirect/nonpulmonary ALI is virtually unstudied. We hypothesized that if Fas or caspase-8 plays a role in the induction of indirect ALI, their local silencing using small interfering RNA (siRNA) should be protective in hemorrhage-induced septic ALI. Initially, as a proof of principle, green fluorescent protein-siRNA was administered intratracheally into transgenic mice overexpressing green fluorescent protein. Twenty-four hours after siRNA delivery, lung sections revealed a significant decrease in green fluorescence. Intratracheally administered Cy-5-labeled Fas-siRNA localized primarily in pulmonary epithelial cells. Intratracheal instillation of siRNA did not induce lung inflammation via toll-like receptor or protein kinase PKR pathways as assessed by lung tissue interferon-alpha, tumor necrosis factor-alpha, and interleukin (IL)-6 levels. Mice subjected to hemorrhagic shock and sepsis received either Fas-, caspase-8-, or control-siRNA intratracheally 4 hours after hemorrhage. Fas- or caspase-8-siRNA significantly reduced lung tissue Fas or caspase-8 mRNA, respectively. Only Fas-siRNA markedly diminished lung tissue tumor necrosis factor-alpha, IL-6, IL-10, interferon-gamma, IL-12, and caspase-3 activity. Fas-siRNA also preserved alveolar architecture and reduced lung neutrophil infiltration and pulmonary epithelial apoptosis. These data indicate the pathophysiological significance of Fas activation in nonpulmonary/shock-induced ALI and the feasibility of intrapulmonary administration of anti-apoptotic siRNA in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.