In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.
The use of structured frameworks can be invaluable in promoting harmonization in the assessment of chemical risk. IPCS has therefore updated and extended its mode of action (MOA) framework for cancer to address the issue of human relevance of a carcinogenic response observed in an experimental study. The first stage is to determine whether it is possible to establish an MOA. This comprises a series of key events along the causal pathway to cancer, identified using a weight-of-evidence approach based on the Bradford Hill criteria. The key events are then compared first qualitatively and then quantitatively between the experimental animals and humans. Finally, a clear statement of confidence, analysis, and implications is produced. The IPCS human relevance framework for cancer provides an analytical tool to enable the transparent evaluation of the data, identification of key data gaps, and structured presentation of information that would be of value in the further risk assessment of the compound, even if relevancy cannot be excluded. This might include data on the shape of the dose-response curve, identification of any thresholds and recognition of potentially susceptible subgroups, for example, the basis of genetic or life-stage differences.
The toxic equivalency factor (TEF) approach has been widely accepted as the most feasible method available at present for evaluating potential health risks associated with exposure to mixtures of dioxin-like compounds (DLCs). The current mammalian TEFs for the DLCs were established by the World Health Organization (WHO) following the meeting of an international expert panel in June of 1997. The TEFs recommended by WHO were determined based on a consensus of scientific judgment and were presented as point estimates. However, the relative potency estimates (REPs) underlying the TEFs were derived from a heterogeneous data set and often span several orders of magnitude. In this article, we present a refined database of mammalian REPs that we believe will facilitate better characterization of the variability and uncertainty inherent in the data. The initial step involved reviewing the REP database used by the WHO panel during its review in 1997. A set of criteria was developed to identify REPs that were determined to be the most representative measure of a biological response and of adequate quality for use in quantitative analyses. REPs were determined to be inappropriate for use in quantitative analyses if any of the established exclusion criteria were met. Comparison of data records to the established exclusion criteria resulted in the identification of a substantial number of REPs believed to be inappropriate for use in quantitative analyses. Next, studies published after 1997 were added to the database. The availability of such a refined database will improve risk assessment for this class of compounds by including additional information from new studies and facilitating the use of quantitative approaches in the further development of TEFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.