Polarization is a topic of intense interest among social scientists, but there is significant disagreement regarding the character of the phenomenon and little understanding of underlying mechanics. A first problem, we argue, is that polarization appears in the literature as not one concept but many. In the first part of the article, we distinguish nine phenomena that may be considered polarization, with suggestions of appropriate measures for each. In the second part of the article, we apply this analysis to evaluate the types of polarization generated by the three major families of computational models proposing specific mechanisms of opinion polarization.
This article distinguishes nine senses of polarization and provides formal measures for each one to refine the methodology used to describe polarization in distributions of attitudes. Each distinct concept is explained through a definition, formal measures, examples, and references. We then apply these measures to GSS data regarding political views, opinions on abortion, and religiosity-topics described as revealing social polarization. Previous breakdowns of polarization include domain-specific assumptions and focus on a subset of the distribution's features. This has conflated multiple, independent features of attitude distributions. The current work aims to extract the distinct senses of polarization and demonstrate that by becoming clearer on these distinctions we can better focus our efforts on substantive issues in social phenomena.
The Hong and Page ‘diversity trumps ability’ result has been used to argue for the more general claim that a diverse set of agents is epistemically superior to a comparable group of experts. Here we extend Hong and Page’s model to landscapes of different degrees of randomness and demonstrate the sensitivity of the ‘diversity trumps ability’ result. This analysis offers a more nuanced picture of how diversity, ability, and expertise may relate. Although models of this sort can indeed be suggestive for diversity policies, we advise against interpreting such results overly broadly.
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others’, in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient.
Public discussions of political and social issues are often characterized by deep and persistent polarization. In social psychology, it's standard to treat belief polarization as the product of epistemic irrationality. In contrast, we argue that the persistent disagreement that grounds political and social polarization can be produced by epistemically rational agents, when those agents have limited cognitive resources. Using an agent-based model of group deliberation, we show that groups of deliberating agents using coherence-based strategies for managing their limited resources tend to polarize into different subgroups. We argue that using that strategy is epistemically rational for limited agents. So even though group polarization looks like it must be the product of human irrationality, polarization can be the result of fully rational deliberation with natural human limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.