The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species-less diverse than the North American tree flora-accounts for half of the world's most diverse tree community
The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples
Despite the severe threats to plant habitats and high levels of extinction risk for plant species in many parts of the world, plant conservation priorities are often poorly represented in national and global frameworks because of a lack of data in an accessible and consistent format to inform conservation decision making. The Important Plant Areas (IPAs) criteria system offers a pragmatic yet scientifically rigorous means of delivering these datasets, enabling informed national-or regional-scale conservation prioritisation, and contributing significantly towards global prioritisation systems including the International Union for Conservation of Nature Key Biodiversity Areas (KBAs) Standard. In this paper, we review the IPA rationale and progress on IPA identification to date, including the perceived limitations of the process and how these may be overcome. We then present a revised set of criteria for use globally, developed through the combined experiences of IPA -017-1336-6 identification over the past decade and a half and through a recent global consultation process. An overview of how the revised IPA criteria can work alongside the newly published KBA Standard is also provided. IPA criteria are based around a sound, scientific, global framework which acknowledges the practical problems of gathering plant and habitat data in many regions of the world, and recognises the role of peer reviewed expert opinion in the selection process. National and sub-national engagement in IPA identification is essential, providing a primary route towards long term conservation of key sites for plant diversity. The IPA criteria can be applied to the conservation of all organism groups within the plant and fungal kingdoms.
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
Analyses of forest loss and protected areas suggest that 36 to 57% of Amazonian tree flora may qualify as “globally threatened.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.