We describe a polymerase chain reaction (PCR) based approach to the detection and identification of pathogenic fungi which has potential for the diagnosis of systemic mycoses. Primers to sequences of the large subunit ribosomal DNA genes, which are universally conserved within the fungal kingdom, were capable of amplifying DNA from 43 strains representing 20 species (12 genera) of medically important fungi.Sequence analysis of the products obtained from Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans allowed us to design species-specific primers which only amplified homologous DNA. The use of these two PCRs in tandem allows the detection (universal PCR) and identification (species-specific PCR) of a fungal pathogen within 8 h from simulated clinical specimens.
The potential commercialization of genetically modified herbicide-tolerant (GMHT) oilseed rape in Europe raises various concerns about their potential environmental and agronomic impacts, especially those associated with the escape of transgenes. Pollen of oilseed rape can be dispersed in space, resulting in the fertilization of sympatric compatible wild relatives (e.g. Brassica rapa) and oilseed rape cultivars grown nearby (GM and/or non-GM Brassica napus). The spatial and temporal dispersal of seeds of oilseed rape may lead to feral oilseed rape populations outside the cropped areas and oilseed rape volunteers in subsequent crops in the rotation. The incorporation of a HT trait(s) may increase the fitness of the recipient plants, making them more abundant and persistent, and may result in weeds that are difficult to control by the herbicide(s) to which they are tolerant. Vertical gene flow from transgenic oilseed rape to non-GM counterparts may also have an impact on farming and supply chain management, depending on labelling thresholds for the adventitious presence of GM material in non-GM products. Given the extent of pollen and seed dispersal in oilseed rape, it is obvious that the safe and sound integration of GMHT oilseed rape in Europe may require significant on-farm and off-farm management efforts. Crucial practical measures that can reduce vertical gene flow include (1) isolating seed production of Brassica napus, (2) the use of certified seed, (3) isolating fields of GM oilseed rape, (4) harvesting at the correct crop development stage with properly adjusted combine settings, (5) ensuring maximum germination of shed seeds after harvest, (6) controlling volunteers in subsequent crops, and (7) keeping on-farm records. The implementation of the recommended practices may, however, be difficult, entailing various challenges.
A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct hybridisation of the amplicons on a predefined microarray (DualChip Ò GMO, Eppendorf, Germany). The validation was performed within the framework of a European project (Co-Extra, contract no 007158) and in collaboration with 12 laboratories specialised in GMO detection. The present study reports the strategy and the results of an ISO complying validation of the method carried out through an inter-laboratory study. Sets of blind samples were provided consisting of DNA reference materials covering all the elements detectable by specific probes present on the array. The GMO concentrations varied from 1% down to 0.045%. In addition, a mixture of two GMO events (0.1% RRS diluted in 100% TOPAS19/2) was incorporated in the S. Leimanis Á S. Hamels (&) Á J. Remacle Eppendorf Array Technologies, 20 Rue du séminaire, 5000 Namur, Belgium e-mail: hamels.s@eppendorf.be DOI 10.1007/s00217-008-0886-y study to test the robustness of the assay in extreme conditions. Data were processed according to ISO 5725 standard. The method was evaluated with predefined performance criteria with respect to the EC CRL method acceptance criteria. The overall method performance met the acceptance criteria; in particular, the results showed that the method is suitable for the detection of the different target elements at 0.1% concentration of GMO with a 95% accuracy rate. This collaborative trial showed that the method can be considered as fit for the purpose of screening with respect to its intra-and inter-laboratory accuracy. The results demonstrated the validity of combining multiplex PCR with array detection as provided by the DualChip Ò GMO (Eppendorf, Germany) for the screening of GMO. The results showed that the technology is robust, practical and suitable as a screening tool.123 Eur Food Res Technol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.