Diminished Sonic Hedgehog (Shh) signaling is associated with the most common forebrain defect in humans, holoprosencephaly (HPE), which includes cyclopia, a phenotype also seen in mice and other vertebrates with defective Shh signaling. The secreted protein Shh acts as a crucial factor that patterns the ventral forebrain and is required for the division of the primordial eye field and brain into two discrete halves. Gli2 is one of three vertebrate transcription factors implicated as obligatory mediators of Shh signal transduction. Here, we show that loss-of-function mutations in the human GLI2 gene are associated with a distinctive phenotype (within the HPE spectrum) whose primary features include defective anterior pituitary formation and pan-hypopituitarism, with or without overt forebrain cleavage abnormalities, and HPE-like midfacial hypoplasia. We also demonstrate that these mutations lack GLI2 activity. We report on a functional association between GLI2 and human disease and highlight the role of GLI2 in human head development.
The activin receptor-like kinase 1 gene (ALK-1) is the second locus for the autosomal dominant vascular disease hereditary hemorrhagic telangiectasia (HHT). In this paper we present the genomic structure of the ALK-1 gene, a type I serine-threonine kinase receptor expressed predominantly in endothelial cells. The coding region is contained within nine exons, spanning < 15 kb of genomic DNA. All introns follow the GT-AG rule, except for intron 6, which has a TAG/gcaag 5' splice junction. The positions of introns in the intracellular domain are almost identical to those of the mouse serine-threonine kinase receptor TSK-7L. By sequencing ALK-1 from genomic DNA, mutations were found in six of six families with HHT either shown to link to chromosome 12q13 or in which linkage of HHT to chromosome 9q33 had been excluded. Mutations were also found in three of six patients from families in which available linkage data were insufficient to allow certainty with regard to the locus involved. The high rate of detection of mutations by genomic sequencing of ALK-1 suggests that this will be a useful diagnostic test for HHT2, particularly where preliminary linkage to chromosome 12q13 can be established. In two cases in which premature termination codons were found in genomic DNA, the mutant mRNA was either not present or present at barely detectable levels. These data suggest that mutations in ALK-1 are functionally null alleles.
SATB2-associated syndrome (SAS) is an autosomal dominant disorder characterized by significant neurodevelopmental disabilities with limited to absent speech, behavioral issues, and craniofacial anomalies. Previous studies have largely been restricted to case reports and small series without in-depth phenotypic characterization or genotype-phenotype correlations. Seventy two study participants were identified as part of the SAS clinical registry. Individuals with a molecularly confirmed diagnosis of SAS were referred after clinical diagnostic testing. In this series we present the most comprehensive phenotypic and genotypic characterization of SAS to date, including prevalence of each clinical feature, neurodevelopmental milestones, and when available, patient management. We confirm that the most distinctive features are neurodevelopmental delay with invariably severely limited speech, abnormalities of the palate (cleft or high-arched), dental anomalies (crowding, macrodontia, abnormal shape), and behavioral issues with or without bone or brain anomalies. This comprehensive clinical characterization will help clinicians with the diagnosis, counseling and management of SAS and help provide families with anticipatory guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.