High-throughput screening (HTS) has been postulated in several quarters to be a contributory factor to the decline in productivity in the pharmaceutical industry. Moreover, it has been blamed for stifling the creativity that drug discovery demands. In this article, we aim to dispel these myths and present the case for the use of HTS as part of a proven scientific tool kit, the wider use of which is essential for the discovery of new chemotypes.
Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.
Betulinic acid [1] and platanic acid [2], isolated from the leaves of Syzigium claviforum, were found to be inhibitors of HIV replication in H9 lymphocyte cells. Evaluation of anti-HIV activity with eight derivatives of 1 revealed that dihydrobetulinic acid [3] was also a potent inhibitor of HIV replication. The C-3 hydroxy group and C-17 carboxylic acid group, as well as the C-19 substituents, contribute to enhanced anti-HIV activity. The inhibitory activity of these compounds against protein kinase C (PKC) was also examined, since a correlation between anti-HIV and anti-PKC activities has been suggested. However, there was no apparent correlation between anti-HIV activity and the inhibition of PKC among these compounds.
Among epigenetic “writers”, “readers”, and “erasers”, the lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9me2) and non-histone proteins, have been implicated in a variety of human diseases. A “toolkit” of well-characterized chemical probes will allow biological and disease hypotheses concerning these proteins to be tested in cell-based and animal models with high confidence. We previously discovered potent and selective G9a/GLP inhibitors including the cellular chemical probe UNC0638, which displays an excellent separation of functional potency and cell toxicity. However, this inhibitor is not suitable for animal studies due to its poor pharmacokinetic (PK) properties. Here, we report the discovery of the first G9a and GLP in vivo chemical probe UNC0642, which not only maintains high in vitro and cellular potency, low cell toxicity, and excellent selectivity, but also displays improved in vivo PK properties, making it suitable for animal studies.
We describe the discovery of UNC1215, a potent and selective chemical probe for the methyl-lysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a Kd of 120 nM, competitively displacing mono- or dimethyl-lysine containing peptides, and is greater than 50-fold selective versus other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a novel 2:2 polyvalent mode of interaction. In cells, UNC1215 is non-toxic and binds directly to L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins and point mutants that disrupt the Kme binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215. Finally, UNC1215 demonstrates a novel Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.