The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite, and the Two Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 2009 December 14. WISE began surveying the sky on 2010 January 14 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in 2010 November). WISE is achieving 5σ point source sensitivities better than 0.08, 0.11, 1, and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12, and 22 μm. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6. 1, 6. 4, 6. 5, and 12. 0 at 3.4, 4.6, 12, and 22 μm, and the astrometric precision for high signal-to-noise sources is better than 0. 15.
Near-infrared observations of the z = 2.286 IRAS source FSC 10214+4724, made with the near-infrared camera on t~e W. M. Keck Telescope, are reported. Deep broad-band images at 2.15 and 1.27 µm, and narrow-band images at 2.165 and 2.125 µm with 0':6 to 0''.9 seeing show that FSC 10214+4724 consists of at least t~ree distinct ~ompon~nts in a compact group of galaxies. The source of the infrared luminosity appears ~o be t~ a strongly mteractmg galaxy that has a luminosity ~ 100 times that of a present-day L * galaxy. The mteractton suggests an "age" of this galaxy of ~ 10 9 yr. The Hex emission is resolved as a source of diameter ~ 5 kpc, suggesting that a starburst contributes to the observed Hex emission. There is an excess of objects in the FSC 10214 + 4724 field that could represent galaxies in an associated cluster.
The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Survey into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024 2 HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5" resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47'x47' field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE is currently in its Preliminary Design Phase, with the mission Preliminary Design Review scheduled for July, 2005. WISE is scheduled to launch in mid 2009; the project web site can be found at www.wise
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.