Several concepts, which in the aggregate get might be used to account for "resilience" against age- and disease-related changes, have been the subject of much research. These include brain reserve, cognitive reserve, and brain maintenance. However, different investigators have use these terms in different ways, and there has never been an attempt to arrive at consensus on the definition of these concepts. Furthermore, there has been confusion regarding the measurement of these constructs and the appropriate ways to apply them to research. Therefore the reserve, resilience, and protective factors professional interest area, established under the auspices of the Alzheimer's Association, established a whitepaper workgroup to develop consensus definitions for cognitive reserve, brain reserve, and brain maintenance. The workgroup also evaluated measures that have been used to implement these concepts in research settings and developed guidelines for research that explores or utilizes these concepts. The workgroup hopes that this whitepaper will form a reference point for researchers in this area and facilitate research by supplying a common language.
Neuroimaging studies examining the effects of aging and neuropsychiatric disorders on the cerebral cortex have largely been based on measures of cortical volume. Given that cortical volume is a product of thickness and surface area, it is plausible that measures of volume capture at least 2 distinct sets of genetic influences. The present study aims to examine the genetic relationships between measures of cortical surface area and thickness. Participants were men in the Vietnam Era Twin Study of Aging (110 monozygotic pairs and 92 dizygotic pairs). Mean age was 55.8 years (range: 51-59). Bivariate twin analyses were utilized in order to estimate the heritability of cortical surface area and thickness, as well as their degree of genetic overlap. Total cortical surface area and average cortical thickness were both highly heritable (0.89 and 0.81, respectively) but were essentially unrelated genetically (genetic correlation = 0.08). This pattern was similar at the lobar and regional levels of analysis. These results demonstrate that cortical volume measures combine at least 2 distinct sources of genetic influences. We conclude that using volume in a genetically informative study, or as an endophenotype for a disorder, may confound the underlying genetic architecture of brain structure.
General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16–102) and find 148 genome-wide significant independent loci (P < 5 × 10−8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.