Prolonged febrile illnesses remain a diagnostic challenge. Despite the technological progress of the late 20th century, the origin of the fever remains elusive in many patients, especially in those with episodic fevers. Noninfectious inflammatory diseases emerge as the most prevalent diagnostic category.
BackgroundThere are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited.MethodsA combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients.ResultsctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays.ConclusionsctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.Electronic supplementary materialThe online version of this article (10.1186/s13073-018-0595-5) contains supplementary material, which is available to authorized users.
BackgroundCancer seems to have an independent adverse prognostic effect on COVID-19-related mortality, but uncertainty exists regarding its effect across different patient subgroups. We report a population-based analysis of patients hospitalised with COVID-19 with prior or current solid cancer versus those without cancer.MethodsWe analysed data of adult patients registered until 24 May 2020 in the Belgian nationwide database of Sciensano. The primary objective was in-hospital mortality within 30 days of COVID-19 diagnosis among patients with solid cancer versus patients without cancer. Severe event occurrence, a composite of intensive care unit admission, invasive ventilation and/or death, was a secondary objective. These endpoints were analysed across different patient subgroups. Multivariable logistic regression models were used to analyse the association between cancer and clinical characteristics (baseline analysis) and the effect of cancer on in-hospital mortality and on severe event occurrence, adjusting for clinical characteristics (in-hospital analysis).ResultsA total of 13 594 patients (of whom 1187 with solid cancer (8.7%)) were evaluable for the baseline analysis and 10 486 (892 with solid cancer (8.5%)) for the in-hospital analysis. Patients with cancer were older and presented with less symptoms/signs and lung imaging alterations. The 30-day in-hospital mortality was higher in patients with solid cancer compared with patients without cancer (31.7% vs 20.0%, respectively; adjusted OR (aOR) 1.34; 95% CI 1.13 to 1.58). The aOR was 3.84 (95% CI 1.94 to 7.59) among younger patients (<60 years) and 2.27 (95% CI 1.41 to 3.64) among patients without other comorbidities. Severe event occurrence was similar in both groups (36.7% vs 28.8%; aOR 1.10; 95% CI 0.95 to 1.29).ConclusionsThis population-based analysis demonstrates that solid cancer is an independent adverse prognostic factor for in-hospital mortality among patients with COVID-19. This adverse effect was more pronounced among younger patients and those without other comorbidities. Patients with solid cancer should be prioritised in vaccination campaigns and in tailored containment measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.